{"title":"低速楔形载荷冲击下三维编织复合材料的 I 型断裂失效机理","authors":"Juan Fang, Baozhong Sun, Bohong Gu","doi":"10.1016/j.engfracmech.2024.110533","DOIUrl":null,"url":null,"abstract":"<div><div>Mode-I low-velocity impact fracture very often happens during the lifetime service of fiber-reinforced composites. Three-dimensional braided carbon fiber/epoxy composites (3DBC) have higher fracture toughness than laminate, while the Mode-I fracture is also an important behavior. Here we report the Mode-I fracture of 3DBC under low-velocity impact. A single cleavage triangle (SCT) specimen was prepared for the Mode-I impact test. A high-speed camera was used to capture images of the fracture initiation and growth. The inner damages were observed using X-ray microcomputed tomography (Micro-CT). The fracture behaviors were also compared among three braided angles and three impact energies. We found that the crack propagation follows the path of the crimped yarn. The propagation direction changes upon reaching interweaved points. The energy absorption at rupture increases as the braiding angle. A finite element analysis (FEA) model was developed to analyze the internal crack propagation behaviors and failure mechanisms. The fracture mechanisms of 3DBC have been compared between the tests and the FEA results. It was found the braided angle of 45°has a higher impact fracture toughness than the can 10°, 20° and 30° samples.</div></div>","PeriodicalId":11576,"journal":{"name":"Engineering Fracture Mechanics","volume":"310 ","pages":"Article 110533"},"PeriodicalIF":4.7000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mode-I fracture failure mechanism of 3-D braided composites under low-velocity wedge-loaded impact\",\"authors\":\"Juan Fang, Baozhong Sun, Bohong Gu\",\"doi\":\"10.1016/j.engfracmech.2024.110533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Mode-I low-velocity impact fracture very often happens during the lifetime service of fiber-reinforced composites. Three-dimensional braided carbon fiber/epoxy composites (3DBC) have higher fracture toughness than laminate, while the Mode-I fracture is also an important behavior. Here we report the Mode-I fracture of 3DBC under low-velocity impact. A single cleavage triangle (SCT) specimen was prepared for the Mode-I impact test. A high-speed camera was used to capture images of the fracture initiation and growth. The inner damages were observed using X-ray microcomputed tomography (Micro-CT). The fracture behaviors were also compared among three braided angles and three impact energies. We found that the crack propagation follows the path of the crimped yarn. The propagation direction changes upon reaching interweaved points. The energy absorption at rupture increases as the braiding angle. A finite element analysis (FEA) model was developed to analyze the internal crack propagation behaviors and failure mechanisms. The fracture mechanisms of 3DBC have been compared between the tests and the FEA results. It was found the braided angle of 45°has a higher impact fracture toughness than the can 10°, 20° and 30° samples.</div></div>\",\"PeriodicalId\":11576,\"journal\":{\"name\":\"Engineering Fracture Mechanics\",\"volume\":\"310 \",\"pages\":\"Article 110533\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Fracture Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013794424006969\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013794424006969","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Mode-I fracture failure mechanism of 3-D braided composites under low-velocity wedge-loaded impact
Mode-I low-velocity impact fracture very often happens during the lifetime service of fiber-reinforced composites. Three-dimensional braided carbon fiber/epoxy composites (3DBC) have higher fracture toughness than laminate, while the Mode-I fracture is also an important behavior. Here we report the Mode-I fracture of 3DBC under low-velocity impact. A single cleavage triangle (SCT) specimen was prepared for the Mode-I impact test. A high-speed camera was used to capture images of the fracture initiation and growth. The inner damages were observed using X-ray microcomputed tomography (Micro-CT). The fracture behaviors were also compared among three braided angles and three impact energies. We found that the crack propagation follows the path of the crimped yarn. The propagation direction changes upon reaching interweaved points. The energy absorption at rupture increases as the braiding angle. A finite element analysis (FEA) model was developed to analyze the internal crack propagation behaviors and failure mechanisms. The fracture mechanisms of 3DBC have been compared between the tests and the FEA results. It was found the braided angle of 45°has a higher impact fracture toughness than the can 10°, 20° and 30° samples.
期刊介绍:
EFM covers a broad range of topics in fracture mechanics to be of interest and use to both researchers and practitioners. Contributions are welcome which address the fracture behavior of conventional engineering material systems as well as newly emerging material systems. Contributions on developments in the areas of mechanics and materials science strongly related to fracture mechanics are also welcome. Papers on fatigue are welcome if they treat the fatigue process using the methods of fracture mechanics.