{"title":"掺铁氧化锌高效降解染料的 Ab initio 研究","authors":"Muhammad Abdul Moiz","doi":"10.1016/j.comptc.2024.114886","DOIUrl":null,"url":null,"abstract":"<div><div>First principle calculations were performed on iron doped zinc oxide (Fe-ZO) to reduce its bandgap to optimize its visible light absorption. The doping of iron in the ZO is done via supercells of <em>Zn</em><sub>1-x</sub><em>Fe<sub>x</sub>O</em>. The doped systems are analyzed using generalized gradient approximation plane wave pseudopotential on density functional theory, or local density approximation and LDA + U with PBE. The computational analysis reveals that the bandgap reduced with increasing dopant concentration. Furthermore, a robust absorption is observed toward the visible region of the spectrum. This enhances its ability as a photochemical material to increase degradation rates of industrial grade dyes.</div></div>","PeriodicalId":284,"journal":{"name":"Computational and Theoretical Chemistry","volume":"1241 ","pages":"Article 114886"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ab initio study of iron-doped zinc oxide for efficient dye degradation\",\"authors\":\"Muhammad Abdul Moiz\",\"doi\":\"10.1016/j.comptc.2024.114886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>First principle calculations were performed on iron doped zinc oxide (Fe-ZO) to reduce its bandgap to optimize its visible light absorption. The doping of iron in the ZO is done via supercells of <em>Zn</em><sub>1-x</sub><em>Fe<sub>x</sub>O</em>. The doped systems are analyzed using generalized gradient approximation plane wave pseudopotential on density functional theory, or local density approximation and LDA + U with PBE. The computational analysis reveals that the bandgap reduced with increasing dopant concentration. Furthermore, a robust absorption is observed toward the visible region of the spectrum. This enhances its ability as a photochemical material to increase degradation rates of industrial grade dyes.</div></div>\",\"PeriodicalId\":284,\"journal\":{\"name\":\"Computational and Theoretical Chemistry\",\"volume\":\"1241 \",\"pages\":\"Article 114886\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Theoretical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210271X24004250\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Theoretical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210271X24004250","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
对掺铁氧化锌(Fe-ZO)进行了第一原理计算,以降低其带隙,优化其对可见光的吸收。铁在氧化锌中的掺杂是通过 Zn1-xFexO 超胞完成的。使用密度泛函理论的广义梯度近似平面波伪势,或局部密度近似和带有 PBE 的 LDA + U 对掺杂系统进行了分析。计算分析表明,带隙随着掺杂浓度的增加而减小。此外,在光谱的可见光区域观察到了强吸收。这增强了其作为光化学材料的能力,可提高工业级染料的降解率。
Ab initio study of iron-doped zinc oxide for efficient dye degradation
First principle calculations were performed on iron doped zinc oxide (Fe-ZO) to reduce its bandgap to optimize its visible light absorption. The doping of iron in the ZO is done via supercells of Zn1-xFexO. The doped systems are analyzed using generalized gradient approximation plane wave pseudopotential on density functional theory, or local density approximation and LDA + U with PBE. The computational analysis reveals that the bandgap reduced with increasing dopant concentration. Furthermore, a robust absorption is observed toward the visible region of the spectrum. This enhances its ability as a photochemical material to increase degradation rates of industrial grade dyes.
期刊介绍:
Computational and Theoretical Chemistry publishes high quality, original reports of significance in computational and theoretical chemistry including those that deal with problems of structure, properties, energetics, weak interactions, reaction mechanisms, catalysis, and reaction rates involving atoms, molecules, clusters, surfaces, and bulk matter.