Xuefeng Cao , Xiaoyi Zhang , Anzhu Yu , Wenshuai Yu , Shuhui Bu
{"title":"CSStereo:利用对比学习和特征选择增强的无人机场景立体匹配网络","authors":"Xuefeng Cao , Xiaoyi Zhang , Anzhu Yu , Wenshuai Yu , Shuhui Bu","doi":"10.1016/j.jag.2024.104189","DOIUrl":null,"url":null,"abstract":"<div><div>Stereo matching is essential for establishing pixel-level correspondences and estimating depth in scene reconstruction. However, applying stereo matching networks to UAV scenarios presents unique challenges due to varying altitudes, angles, and rapidly changing conditions, unlike the controlled settings in autonomous driving or the uniform scenes in satellite imagery. To address these UAV-specific challenges, we propose the CSStereo network (Contrastive Learning and Feature Selection Stereo Matching Network), which integrates contrastive learning and feature selection modules. The contrastive learning module enhances feature representation by comparing similarities and differences between samples, thereby improving discrimination among features in UAV scenarios. The feature selection module enhances robustness and generalization across different UAV scenarios by selecting relevant and informative features. Extensive experimental evaluations demonstrate the effectiveness of CSStereo in UAV scenarios, and show superior performance in both qualitative and quantitative assessments.</div></div>","PeriodicalId":73423,"journal":{"name":"International journal of applied earth observation and geoinformation : ITC journal","volume":"134 ","pages":"Article 104189"},"PeriodicalIF":7.6000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CSStereo: A UAV scenarios stereo matching network enhanced with contrastive learning and feature selection\",\"authors\":\"Xuefeng Cao , Xiaoyi Zhang , Anzhu Yu , Wenshuai Yu , Shuhui Bu\",\"doi\":\"10.1016/j.jag.2024.104189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Stereo matching is essential for establishing pixel-level correspondences and estimating depth in scene reconstruction. However, applying stereo matching networks to UAV scenarios presents unique challenges due to varying altitudes, angles, and rapidly changing conditions, unlike the controlled settings in autonomous driving or the uniform scenes in satellite imagery. To address these UAV-specific challenges, we propose the CSStereo network (Contrastive Learning and Feature Selection Stereo Matching Network), which integrates contrastive learning and feature selection modules. The contrastive learning module enhances feature representation by comparing similarities and differences between samples, thereby improving discrimination among features in UAV scenarios. The feature selection module enhances robustness and generalization across different UAV scenarios by selecting relevant and informative features. Extensive experimental evaluations demonstrate the effectiveness of CSStereo in UAV scenarios, and show superior performance in both qualitative and quantitative assessments.</div></div>\",\"PeriodicalId\":73423,\"journal\":{\"name\":\"International journal of applied earth observation and geoinformation : ITC journal\",\"volume\":\"134 \",\"pages\":\"Article 104189\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of applied earth observation and geoinformation : ITC journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569843224005454\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied earth observation and geoinformation : ITC journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569843224005454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
CSStereo: A UAV scenarios stereo matching network enhanced with contrastive learning and feature selection
Stereo matching is essential for establishing pixel-level correspondences and estimating depth in scene reconstruction. However, applying stereo matching networks to UAV scenarios presents unique challenges due to varying altitudes, angles, and rapidly changing conditions, unlike the controlled settings in autonomous driving or the uniform scenes in satellite imagery. To address these UAV-specific challenges, we propose the CSStereo network (Contrastive Learning and Feature Selection Stereo Matching Network), which integrates contrastive learning and feature selection modules. The contrastive learning module enhances feature representation by comparing similarities and differences between samples, thereby improving discrimination among features in UAV scenarios. The feature selection module enhances robustness and generalization across different UAV scenarios by selecting relevant and informative features. Extensive experimental evaluations demonstrate the effectiveness of CSStereo in UAV scenarios, and show superior performance in both qualitative and quantitative assessments.
期刊介绍:
The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.