Xiaolong Ma , Chun Liu , Akram Akbar , Yuanfan Qi , Xiaohang Shao , Yihong Qiao , Xuefei Shao
{"title":"固态激光雷达和 IMU 耦合城市道路非重访测绘","authors":"Xiaolong Ma , Chun Liu , Akram Akbar , Yuanfan Qi , Xiaohang Shao , Yihong Qiao , Xuefei Shao","doi":"10.1016/j.jag.2024.104207","DOIUrl":null,"url":null,"abstract":"<div><div>3D mapping provides highly accurate environmental data, which is essential for critical applications such as autonomous driving and urban emergency response. Light detection and ranging (LiDAR) sensors, particularly solid-state ones, play a pivotal role in spatial–temporal mapping by providing precise three-dimensional data of the environment, significantly enhancing remote sensing capabilities and adaptability to challenging environments compared to mechanical LiDAR systems. However, the limited field of view results in a sparse point cloud frame with few features, which poses challenges to feature matching, causes pose offset, and hinders spatial–temporal continuity, and further significant obstacle for existing vehicle-mounted mobile mapping methods. To address the above issues, we proposed a novel approach that integrating inertial measurement unit (IMU) with solid-state LiDAR. Specifically, it comprises two key modules: an initial localization mapping module, mitigating the limitations of solid-state LiDAR in positioning and mapping accuracy, and an attitude optimization mapping module utilizing real-time high-frequency IMU data to identify key frames for correcting initial attitudes and generating accurate 3D maps. The effectiveness of the method is validated through extensive experiments in complex community and high-speed urban road scenarios. Furthermore, our approach outperforms than the state-of-the-art techniques in test scenarios, achieving a significant 35% reduction in average absolute pose error and enhancing the robustness of vehicle-mounted mapping.</div></div>","PeriodicalId":73423,"journal":{"name":"International journal of applied earth observation and geoinformation : ITC journal","volume":"134 ","pages":"Article 104207"},"PeriodicalIF":7.6000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solid-state LiDAR and IMU coupled urban road non-revisiting mapping\",\"authors\":\"Xiaolong Ma , Chun Liu , Akram Akbar , Yuanfan Qi , Xiaohang Shao , Yihong Qiao , Xuefei Shao\",\"doi\":\"10.1016/j.jag.2024.104207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>3D mapping provides highly accurate environmental data, which is essential for critical applications such as autonomous driving and urban emergency response. Light detection and ranging (LiDAR) sensors, particularly solid-state ones, play a pivotal role in spatial–temporal mapping by providing precise three-dimensional data of the environment, significantly enhancing remote sensing capabilities and adaptability to challenging environments compared to mechanical LiDAR systems. However, the limited field of view results in a sparse point cloud frame with few features, which poses challenges to feature matching, causes pose offset, and hinders spatial–temporal continuity, and further significant obstacle for existing vehicle-mounted mobile mapping methods. To address the above issues, we proposed a novel approach that integrating inertial measurement unit (IMU) with solid-state LiDAR. Specifically, it comprises two key modules: an initial localization mapping module, mitigating the limitations of solid-state LiDAR in positioning and mapping accuracy, and an attitude optimization mapping module utilizing real-time high-frequency IMU data to identify key frames for correcting initial attitudes and generating accurate 3D maps. The effectiveness of the method is validated through extensive experiments in complex community and high-speed urban road scenarios. Furthermore, our approach outperforms than the state-of-the-art techniques in test scenarios, achieving a significant 35% reduction in average absolute pose error and enhancing the robustness of vehicle-mounted mapping.</div></div>\",\"PeriodicalId\":73423,\"journal\":{\"name\":\"International journal of applied earth observation and geoinformation : ITC journal\",\"volume\":\"134 \",\"pages\":\"Article 104207\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of applied earth observation and geoinformation : ITC journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569843224005636\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied earth observation and geoinformation : ITC journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569843224005636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
Solid-state LiDAR and IMU coupled urban road non-revisiting mapping
3D mapping provides highly accurate environmental data, which is essential for critical applications such as autonomous driving and urban emergency response. Light detection and ranging (LiDAR) sensors, particularly solid-state ones, play a pivotal role in spatial–temporal mapping by providing precise three-dimensional data of the environment, significantly enhancing remote sensing capabilities and adaptability to challenging environments compared to mechanical LiDAR systems. However, the limited field of view results in a sparse point cloud frame with few features, which poses challenges to feature matching, causes pose offset, and hinders spatial–temporal continuity, and further significant obstacle for existing vehicle-mounted mobile mapping methods. To address the above issues, we proposed a novel approach that integrating inertial measurement unit (IMU) with solid-state LiDAR. Specifically, it comprises two key modules: an initial localization mapping module, mitigating the limitations of solid-state LiDAR in positioning and mapping accuracy, and an attitude optimization mapping module utilizing real-time high-frequency IMU data to identify key frames for correcting initial attitudes and generating accurate 3D maps. The effectiveness of the method is validated through extensive experiments in complex community and high-speed urban road scenarios. Furthermore, our approach outperforms than the state-of-the-art techniques in test scenarios, achieving a significant 35% reduction in average absolute pose error and enhancing the robustness of vehicle-mounted mapping.
期刊介绍:
The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.