Shimin Sun , Jinqi Dong , Ze Wang , Xiangyun Liu , Li Han
{"title":"针对边缘-雾-云环境的按需协作边缘缓存策略","authors":"Shimin Sun , Jinqi Dong , Ze Wang , Xiangyun Liu , Li Han","doi":"10.1016/j.comcom.2024.107967","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we tackle the critical challenges of content edge caching, such as limited storage capacity, content popularity prediction, dynamic user demand, and user privacy, issues that most existing studies only address partially. We present an innovative Genetic Algorithm-based On-demand Collaborative Edge Caching mechanism (GAOCEC), which introduces a multi-tiered caching architecture integrating cloud, fog, and edge computing. To enhance caching efficiency and minimize system cost, a novel on-demand caching quota mechanism is proposed that dynamically allocates cache resources to edge servers. To strengthen user privacy protection during content popularity prediction, a CNN-BiLSTM-based Federated Learning algorithm (CBFL) is presented that ensures high prediction accuracy without the need to upload local data to the cloud. We also refine the genetic algorithm for content placement by fine-tuning various parameter sets to identify the optimal balance between latency reduction and caching cost. Our experimental results validate the effectiveness of our approach, demonstrating increased cache hit rates, decreased content response times, and an overall improvement in system efficiency. This work provides a comprehensive, adaptive, and privacy-preserving solution for the edge–fog–cloud environment.</div></div>","PeriodicalId":55224,"journal":{"name":"Computer Communications","volume":"228 ","pages":"Article 107967"},"PeriodicalIF":4.5000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An on-demand collaborative edge caching strategy for edge–fog–cloud environment\",\"authors\":\"Shimin Sun , Jinqi Dong , Ze Wang , Xiangyun Liu , Li Han\",\"doi\":\"10.1016/j.comcom.2024.107967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we tackle the critical challenges of content edge caching, such as limited storage capacity, content popularity prediction, dynamic user demand, and user privacy, issues that most existing studies only address partially. We present an innovative Genetic Algorithm-based On-demand Collaborative Edge Caching mechanism (GAOCEC), which introduces a multi-tiered caching architecture integrating cloud, fog, and edge computing. To enhance caching efficiency and minimize system cost, a novel on-demand caching quota mechanism is proposed that dynamically allocates cache resources to edge servers. To strengthen user privacy protection during content popularity prediction, a CNN-BiLSTM-based Federated Learning algorithm (CBFL) is presented that ensures high prediction accuracy without the need to upload local data to the cloud. We also refine the genetic algorithm for content placement by fine-tuning various parameter sets to identify the optimal balance between latency reduction and caching cost. Our experimental results validate the effectiveness of our approach, demonstrating increased cache hit rates, decreased content response times, and an overall improvement in system efficiency. This work provides a comprehensive, adaptive, and privacy-preserving solution for the edge–fog–cloud environment.</div></div>\",\"PeriodicalId\":55224,\"journal\":{\"name\":\"Computer Communications\",\"volume\":\"228 \",\"pages\":\"Article 107967\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0140366424003141\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140366424003141","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
An on-demand collaborative edge caching strategy for edge–fog–cloud environment
In this paper, we tackle the critical challenges of content edge caching, such as limited storage capacity, content popularity prediction, dynamic user demand, and user privacy, issues that most existing studies only address partially. We present an innovative Genetic Algorithm-based On-demand Collaborative Edge Caching mechanism (GAOCEC), which introduces a multi-tiered caching architecture integrating cloud, fog, and edge computing. To enhance caching efficiency and minimize system cost, a novel on-demand caching quota mechanism is proposed that dynamically allocates cache resources to edge servers. To strengthen user privacy protection during content popularity prediction, a CNN-BiLSTM-based Federated Learning algorithm (CBFL) is presented that ensures high prediction accuracy without the need to upload local data to the cloud. We also refine the genetic algorithm for content placement by fine-tuning various parameter sets to identify the optimal balance between latency reduction and caching cost. Our experimental results validate the effectiveness of our approach, demonstrating increased cache hit rates, decreased content response times, and an overall improvement in system efficiency. This work provides a comprehensive, adaptive, and privacy-preserving solution for the edge–fog–cloud environment.
期刊介绍:
Computer and Communications networks are key infrastructures of the information society with high socio-economic value as they contribute to the correct operations of many critical services (from healthcare to finance and transportation). Internet is the core of today''s computer-communication infrastructures. This has transformed the Internet, from a robust network for data transfer between computers, to a global, content-rich, communication and information system where contents are increasingly generated by the users, and distributed according to human social relations. Next-generation network technologies, architectures and protocols are therefore required to overcome the limitations of the legacy Internet and add new capabilities and services. The future Internet should be ubiquitous, secure, resilient, and closer to human communication paradigms.
Computer Communications is a peer-reviewed international journal that publishes high-quality scientific articles (both theory and practice) and survey papers covering all aspects of future computer communication networks (on all layers, except the physical layer), with a special attention to the evolution of the Internet architecture, protocols, services, and applications.