Yinjun Zhao , Fengfeng Xi , Guangbo Hao , Yingzhong Tian , Long Li , Jieyu Wang
{"title":"对由具有锁定功能的刚性和柔性肢体组成的混合机械手进行运动静态分析,以实现平面形状变形","authors":"Yinjun Zhao , Fengfeng Xi , Guangbo Hao , Yingzhong Tian , Long Li , Jieyu Wang","doi":"10.1016/j.mechmachtheory.2024.105802","DOIUrl":null,"url":null,"abstract":"<div><div>The incorporation of lockable passive backbones into active compliant morphing systems efficiently results in lightweight, high-load, and large deformation systems. However, there exist challenges in kineto-static analysis due to the interaction between rigid reconfigurable kinematic constraints and the nonlinear deformation of actuated flexible limbs. This paper addresses these issues by developing a kineto-static method to analyze the motion in a novel planar 3-DOF shape-morphing manipulator. The manipulator features two actuated flexible limbs with a lockable variable geometry truss (LVGT). In this study, two isostatic topologies are selected for reconfigurable motion control under external tip loads. A multi-step sequential control strategy is proposed to maneuver the manipulator's platform for desired poses. Then, a constrained-trajectory-based kinematic model is proposed for an inverse kinematic solution considering motion planning. Subsequently, a kineto-static model is introduced, considering constraints from rigid and flexible limbs, aiming to distribute distributing redundant actuation forces. Finally, nonlinear finite element analysis (FEA) and experiments are carried out to validate the effectiveness of the proposed method.</div></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":"203 ","pages":"Article 105802"},"PeriodicalIF":4.5000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kineto-static analysis of a hybrid manipulator consisting of rigid and flexible limbs with locking function for planar shape morphing\",\"authors\":\"Yinjun Zhao , Fengfeng Xi , Guangbo Hao , Yingzhong Tian , Long Li , Jieyu Wang\",\"doi\":\"10.1016/j.mechmachtheory.2024.105802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The incorporation of lockable passive backbones into active compliant morphing systems efficiently results in lightweight, high-load, and large deformation systems. However, there exist challenges in kineto-static analysis due to the interaction between rigid reconfigurable kinematic constraints and the nonlinear deformation of actuated flexible limbs. This paper addresses these issues by developing a kineto-static method to analyze the motion in a novel planar 3-DOF shape-morphing manipulator. The manipulator features two actuated flexible limbs with a lockable variable geometry truss (LVGT). In this study, two isostatic topologies are selected for reconfigurable motion control under external tip loads. A multi-step sequential control strategy is proposed to maneuver the manipulator's platform for desired poses. Then, a constrained-trajectory-based kinematic model is proposed for an inverse kinematic solution considering motion planning. Subsequently, a kineto-static model is introduced, considering constraints from rigid and flexible limbs, aiming to distribute distributing redundant actuation forces. Finally, nonlinear finite element analysis (FEA) and experiments are carried out to validate the effectiveness of the proposed method.</div></div>\",\"PeriodicalId\":49845,\"journal\":{\"name\":\"Mechanism and Machine Theory\",\"volume\":\"203 \",\"pages\":\"Article 105802\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanism and Machine Theory\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0094114X24002295\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanism and Machine Theory","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094114X24002295","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Kineto-static analysis of a hybrid manipulator consisting of rigid and flexible limbs with locking function for planar shape morphing
The incorporation of lockable passive backbones into active compliant morphing systems efficiently results in lightweight, high-load, and large deformation systems. However, there exist challenges in kineto-static analysis due to the interaction between rigid reconfigurable kinematic constraints and the nonlinear deformation of actuated flexible limbs. This paper addresses these issues by developing a kineto-static method to analyze the motion in a novel planar 3-DOF shape-morphing manipulator. The manipulator features two actuated flexible limbs with a lockable variable geometry truss (LVGT). In this study, two isostatic topologies are selected for reconfigurable motion control under external tip loads. A multi-step sequential control strategy is proposed to maneuver the manipulator's platform for desired poses. Then, a constrained-trajectory-based kinematic model is proposed for an inverse kinematic solution considering motion planning. Subsequently, a kineto-static model is introduced, considering constraints from rigid and flexible limbs, aiming to distribute distributing redundant actuation forces. Finally, nonlinear finite element analysis (FEA) and experiments are carried out to validate the effectiveness of the proposed method.
期刊介绍:
Mechanism and Machine Theory provides a medium of communication between engineers and scientists engaged in research and development within the fields of knowledge embraced by IFToMM, the International Federation for the Promotion of Mechanism and Machine Science, therefore affiliated with IFToMM as its official research journal.
The main topics are:
Design Theory and Methodology;
Haptics and Human-Machine-Interfaces;
Robotics, Mechatronics and Micro-Machines;
Mechanisms, Mechanical Transmissions and Machines;
Kinematics, Dynamics, and Control of Mechanical Systems;
Applications to Bioengineering and Molecular Chemistry