基于频域分解的无损医学超声图像压缩技术

IF 2.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Visual Communication and Image Representation Pub Date : 2024-10-01 DOI:10.1016/j.jvcir.2024.104306
Yaqi Zhao, Yue Li
{"title":"基于频域分解的无损医学超声图像压缩技术","authors":"Yaqi Zhao,&nbsp;Yue Li","doi":"10.1016/j.jvcir.2024.104306","DOIUrl":null,"url":null,"abstract":"<div><div>Medical ultrasound imaging is a widely used non-invasive method for diagnosing diseases. However, these images contain significant speckle noise, which differs from the characteristics of natural images. This makes effective lossless compression of medical ultrasound images a challenging task. In this paper, we propose a novel hybrid ultrasound image lossless learning compression framework. Firstly, we use the traditional DCT (discrete cosine transform) to transform the original raw pixels of ultrasound images into the frequency domain. Secondly, to effectively compress the numerical values in the frequency domain, we decompose the DCT coefficients into different groups to reduce local and global information redundancy in the frequency domain. Finally, we use learned and non-learned methods to compress the DCT coefficients of different groups separately. The experimental results show that on the Breast ultrasound image dataset, our proposed method achieves a bit rate reduction of 8.6% to 68.9% compared to learned and non-learned methods.</div></div>","PeriodicalId":54755,"journal":{"name":"Journal of Visual Communication and Image Representation","volume":"104 ","pages":"Article 104306"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lossless medical ultrasound image compression based on frequency domain decomposition\",\"authors\":\"Yaqi Zhao,&nbsp;Yue Li\",\"doi\":\"10.1016/j.jvcir.2024.104306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Medical ultrasound imaging is a widely used non-invasive method for diagnosing diseases. However, these images contain significant speckle noise, which differs from the characteristics of natural images. This makes effective lossless compression of medical ultrasound images a challenging task. In this paper, we propose a novel hybrid ultrasound image lossless learning compression framework. Firstly, we use the traditional DCT (discrete cosine transform) to transform the original raw pixels of ultrasound images into the frequency domain. Secondly, to effectively compress the numerical values in the frequency domain, we decompose the DCT coefficients into different groups to reduce local and global information redundancy in the frequency domain. Finally, we use learned and non-learned methods to compress the DCT coefficients of different groups separately. The experimental results show that on the Breast ultrasound image dataset, our proposed method achieves a bit rate reduction of 8.6% to 68.9% compared to learned and non-learned methods.</div></div>\",\"PeriodicalId\":54755,\"journal\":{\"name\":\"Journal of Visual Communication and Image Representation\",\"volume\":\"104 \",\"pages\":\"Article 104306\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Visual Communication and Image Representation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1047320324002621\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication and Image Representation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047320324002621","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

医学超声成像是一种广泛应用的无创疾病诊断方法。然而,这些图像含有明显的斑点噪声,与自然图像的特征不同。因此,对医学超声图像进行有效的无损压缩是一项具有挑战性的任务。本文提出了一种新型混合超声图像无损学习压缩框架。首先,我们使用传统的 DCT(离散余弦变换)将超声图像的原始像素转换到频域。其次,为了有效压缩频域中的数值,我们将 DCT 系数分解成不同的组,以减少频域中的局部和全局信息冗余。最后,我们使用学习和非学习方法分别压缩不同组的 DCT 系数。实验结果表明,在乳腺超声图像数据集上,我们提出的方法比学习方法和非学习方法的比特率降低了 8.6% 到 68.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lossless medical ultrasound image compression based on frequency domain decomposition
Medical ultrasound imaging is a widely used non-invasive method for diagnosing diseases. However, these images contain significant speckle noise, which differs from the characteristics of natural images. This makes effective lossless compression of medical ultrasound images a challenging task. In this paper, we propose a novel hybrid ultrasound image lossless learning compression framework. Firstly, we use the traditional DCT (discrete cosine transform) to transform the original raw pixels of ultrasound images into the frequency domain. Secondly, to effectively compress the numerical values in the frequency domain, we decompose the DCT coefficients into different groups to reduce local and global information redundancy in the frequency domain. Finally, we use learned and non-learned methods to compress the DCT coefficients of different groups separately. The experimental results show that on the Breast ultrasound image dataset, our proposed method achieves a bit rate reduction of 8.6% to 68.9% compared to learned and non-learned methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Visual Communication and Image Representation
Journal of Visual Communication and Image Representation 工程技术-计算机:软件工程
CiteScore
5.40
自引率
11.50%
发文量
188
审稿时长
9.9 months
期刊介绍: The Journal of Visual Communication and Image Representation publishes papers on state-of-the-art visual communication and image representation, with emphasis on novel technologies and theoretical work in this multidisciplinary area of pure and applied research. The field of visual communication and image representation is considered in its broadest sense and covers both digital and analog aspects as well as processing and communication in biological visual systems.
期刊最新文献
Illumination-guided dual-branch fusion network for partition-based image exposure correction HRGUNet: A novel high-resolution generative adversarial network combined with an improved UNet method for brain tumor segmentation Underwater image enhancement method via extreme enhancement and ultimate weakening Multi-level similarity transfer and adaptive fusion data augmentation for few-shot object detection Color image watermarking using vector SNCM-HMT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1