ParaU-Net:用于肺结节分割的改进型 UNet 并行编码网络

IF 5.2 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of King Saud University-Computer and Information Sciences Pub Date : 2024-10-01 DOI:10.1016/j.jksuci.2024.102203
Yingqi Lu , Xiangsuo Fan , Jinfeng Wang , Shaojun Chen , Jie Meng
{"title":"ParaU-Net:用于肺结节分割的改进型 UNet 并行编码网络","authors":"Yingqi Lu ,&nbsp;Xiangsuo Fan ,&nbsp;Jinfeng Wang ,&nbsp;Shaojun Chen ,&nbsp;Jie Meng","doi":"10.1016/j.jksuci.2024.102203","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate segmentation of lung nodules is crucial for the early detection of lung cancer and other pulmonary diseases. Traditional segmentation methods face several challenges, such as the overlap between nodules and surrounding anatomical structures like blood vessels and bronchi, as well as the variability in nodule size and shape, which complicates the segmentation algorithms. Existing methods often inadequately address these issues, highlighting the need for a more effective solution. To address these challenges, this paper proposes an improved multi-scale parallel fusion encoding network, ParaU-Net. ParaU-Net enhances the segmentation accuracy and model performance by optimizing the encoding process, improving feature extraction, preserving down-sampling information, and expanding the receptive field. Specifically, the multi-scale parallel fusion mechanism introduced in ParaU-Net better captures the fine features of nodules and reduces interference from other structures. Experiments conducted on the LIDC (The Lung Image Database Consortium) public dataset demonstrate the excellent performance of ParaU-Net in segmentation tasks, with results showing an IoU of 87.15%, Dice of 92.16%, F1-score of 92.24%, F2-score of 92.33%, and F0.5-score of 92.69%. These results significantly outperform other advanced segmentation methods, validating the effectiveness and accuracy of the proposed model in lung nodule CT image analysis. The code is available at <span><span>https://github.com/XiaoBai-Lyq/ParaU-Net</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":"36 9","pages":"Article 102203"},"PeriodicalIF":5.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ParaU-Net: An improved UNet parallel coding network for lung nodule segmentation\",\"authors\":\"Yingqi Lu ,&nbsp;Xiangsuo Fan ,&nbsp;Jinfeng Wang ,&nbsp;Shaojun Chen ,&nbsp;Jie Meng\",\"doi\":\"10.1016/j.jksuci.2024.102203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate segmentation of lung nodules is crucial for the early detection of lung cancer and other pulmonary diseases. Traditional segmentation methods face several challenges, such as the overlap between nodules and surrounding anatomical structures like blood vessels and bronchi, as well as the variability in nodule size and shape, which complicates the segmentation algorithms. Existing methods often inadequately address these issues, highlighting the need for a more effective solution. To address these challenges, this paper proposes an improved multi-scale parallel fusion encoding network, ParaU-Net. ParaU-Net enhances the segmentation accuracy and model performance by optimizing the encoding process, improving feature extraction, preserving down-sampling information, and expanding the receptive field. Specifically, the multi-scale parallel fusion mechanism introduced in ParaU-Net better captures the fine features of nodules and reduces interference from other structures. Experiments conducted on the LIDC (The Lung Image Database Consortium) public dataset demonstrate the excellent performance of ParaU-Net in segmentation tasks, with results showing an IoU of 87.15%, Dice of 92.16%, F1-score of 92.24%, F2-score of 92.33%, and F0.5-score of 92.69%. These results significantly outperform other advanced segmentation methods, validating the effectiveness and accuracy of the proposed model in lung nodule CT image analysis. The code is available at <span><span>https://github.com/XiaoBai-Lyq/ParaU-Net</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":48547,\"journal\":{\"name\":\"Journal of King Saud University-Computer and Information Sciences\",\"volume\":\"36 9\",\"pages\":\"Article 102203\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of King Saud University-Computer and Information Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1319157824002921\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of King Saud University-Computer and Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1319157824002921","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

准确分割肺结节对于早期检测肺癌和其他肺部疾病至关重要。传统的分割方法面临着一些挑战,例如结节与周围解剖结构(如血管和支气管)之间的重叠,以及结节大小和形状的可变性,这些都使分割算法变得复杂。现有方法往往无法充分解决这些问题,因此需要更有效的解决方案。为了应对这些挑战,本文提出了一种改进的多尺度并行融合编码网络 ParaU-Net。ParaU-Net 通过优化编码过程、改进特征提取、保留向下采样信息和扩大感受野来提高分割精度和模型性能。具体来说,ParaU-Net 引入的多尺度并行融合机制能更好地捕捉结节的精细特征,并减少其他结构的干扰。在 LIDC(肺部图像数据库联盟)公共数据集上进行的实验证明了 ParaU-Net 在分割任务中的卓越性能,结果显示 IoU 为 87.15%,Dice 为 92.16%,F1-score 为 92.24%,F2-score 为 92.33%,F0.5-score 为 92.69%。这些结果明显优于其他先进的分割方法,验证了所提模型在肺结节 CT 图像分析中的有效性和准确性。代码见 https://github.com/XiaoBai-Lyq/ParaU-Net。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ParaU-Net: An improved UNet parallel coding network for lung nodule segmentation
Accurate segmentation of lung nodules is crucial for the early detection of lung cancer and other pulmonary diseases. Traditional segmentation methods face several challenges, such as the overlap between nodules and surrounding anatomical structures like blood vessels and bronchi, as well as the variability in nodule size and shape, which complicates the segmentation algorithms. Existing methods often inadequately address these issues, highlighting the need for a more effective solution. To address these challenges, this paper proposes an improved multi-scale parallel fusion encoding network, ParaU-Net. ParaU-Net enhances the segmentation accuracy and model performance by optimizing the encoding process, improving feature extraction, preserving down-sampling information, and expanding the receptive field. Specifically, the multi-scale parallel fusion mechanism introduced in ParaU-Net better captures the fine features of nodules and reduces interference from other structures. Experiments conducted on the LIDC (The Lung Image Database Consortium) public dataset demonstrate the excellent performance of ParaU-Net in segmentation tasks, with results showing an IoU of 87.15%, Dice of 92.16%, F1-score of 92.24%, F2-score of 92.33%, and F0.5-score of 92.69%. These results significantly outperform other advanced segmentation methods, validating the effectiveness and accuracy of the proposed model in lung nodule CT image analysis. The code is available at https://github.com/XiaoBai-Lyq/ParaU-Net.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.50
自引率
8.70%
发文量
656
审稿时长
29 days
期刊介绍: In 2022 the Journal of King Saud University - Computer and Information Sciences will become an author paid open access journal. Authors who submit their manuscript after October 31st 2021 will be asked to pay an Article Processing Charge (APC) after acceptance of their paper to make their work immediately, permanently, and freely accessible to all. The Journal of King Saud University Computer and Information Sciences is a refereed, international journal that covers all aspects of both foundations of computer and its practical applications.
期刊最新文献
Visually meaningful image encryption for secure and authenticated data transmission using chaotic maps Leukocyte segmentation based on DenseREU-Net Knowledge-embedded multi-layer collaborative adaptive fusion network: Addressing challenges in foggy conditions and complex imaging Feature-fused residual network for time series classification Low-light image enhancement: A comprehensive review on methods, datasets and evaluation metrics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1