空间域快速稳健的 JND 引导视频水印方案

IF 5.2 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of King Saud University-Computer and Information Sciences Pub Date : 2024-09-30 DOI:10.1016/j.jksuci.2024.102199
Antonio Cedillo-Hernandez , Lydia Velazquez-Garcia , Manuel Cedillo-Hernandez , David Conchouso-Gonzalez
{"title":"空间域快速稳健的 JND 引导视频水印方案","authors":"Antonio Cedillo-Hernandez ,&nbsp;Lydia Velazquez-Garcia ,&nbsp;Manuel Cedillo-Hernandez ,&nbsp;David Conchouso-Gonzalez","doi":"10.1016/j.jksuci.2024.102199","DOIUrl":null,"url":null,"abstract":"<div><div>Generally speaking, those watermarking studies using the spatial domain tend to be fast but with limited robustness and imperceptibility while those performed in other transform domains are robust but have high computational cost. Watermarking applied to digital video has as one of the main challenges the large amount of computational power required due to the huge amount of information to be processed. In this paper we propose a watermarking algorithm for digital video that addresses this problem. To increase the speed, the watermark is embedded using a technique to modify the DCT coefficients directly in the spatial domain, in addition to carrying out this process considering the video scene as the basic unit and not the video frame. In terms of robustness, the watermark is modulated by a Just Noticeable Distortion (JND) scheme computed directly in the spatial domain guided by visual attention to increase the strength of the watermark to the maximum level but without this operation being perceivable by human eyes. Experimental results confirm that the proposed method achieves remarkable performance in terms of processing time, robustness and imperceptibility compared to previous studies.</div></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast and robust JND-guided video watermarking scheme in spatial domain\",\"authors\":\"Antonio Cedillo-Hernandez ,&nbsp;Lydia Velazquez-Garcia ,&nbsp;Manuel Cedillo-Hernandez ,&nbsp;David Conchouso-Gonzalez\",\"doi\":\"10.1016/j.jksuci.2024.102199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Generally speaking, those watermarking studies using the spatial domain tend to be fast but with limited robustness and imperceptibility while those performed in other transform domains are robust but have high computational cost. Watermarking applied to digital video has as one of the main challenges the large amount of computational power required due to the huge amount of information to be processed. In this paper we propose a watermarking algorithm for digital video that addresses this problem. To increase the speed, the watermark is embedded using a technique to modify the DCT coefficients directly in the spatial domain, in addition to carrying out this process considering the video scene as the basic unit and not the video frame. In terms of robustness, the watermark is modulated by a Just Noticeable Distortion (JND) scheme computed directly in the spatial domain guided by visual attention to increase the strength of the watermark to the maximum level but without this operation being perceivable by human eyes. Experimental results confirm that the proposed method achieves remarkable performance in terms of processing time, robustness and imperceptibility compared to previous studies.</div></div>\",\"PeriodicalId\":48547,\"journal\":{\"name\":\"Journal of King Saud University-Computer and Information Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of King Saud University-Computer and Information Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S131915782400288X\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of King Saud University-Computer and Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S131915782400288X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

一般来说,使用空间域进行的水印研究往往速度快,但鲁棒性和不可感知性有限,而使用其他变换域进行的水印研究鲁棒性强,但计算成本高。数字视频水印技术面临的主要挑战之一是,由于需要处理的信息量巨大,因此需要大量的计算能力。本文针对这一问题提出了一种数字视频水印算法。为了提高速度,我们采用了一种在空间域直接修改 DCT 系数的技术来嵌入水印,此外,我们还将视频场景而不是视频帧作为基本单位来执行这一过程。在鲁棒性方面,水印是通过直接在空间域计算的 "刚注意到的失真"(JND)方案调制的,该方案以视觉注意力为导向,将水印强度提高到最大水平,但人眼无法感知这一操作。实验结果证实,与之前的研究相比,所提出的方法在处理时间、鲁棒性和不可感知性方面都取得了显著的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fast and robust JND-guided video watermarking scheme in spatial domain
Generally speaking, those watermarking studies using the spatial domain tend to be fast but with limited robustness and imperceptibility while those performed in other transform domains are robust but have high computational cost. Watermarking applied to digital video has as one of the main challenges the large amount of computational power required due to the huge amount of information to be processed. In this paper we propose a watermarking algorithm for digital video that addresses this problem. To increase the speed, the watermark is embedded using a technique to modify the DCT coefficients directly in the spatial domain, in addition to carrying out this process considering the video scene as the basic unit and not the video frame. In terms of robustness, the watermark is modulated by a Just Noticeable Distortion (JND) scheme computed directly in the spatial domain guided by visual attention to increase the strength of the watermark to the maximum level but without this operation being perceivable by human eyes. Experimental results confirm that the proposed method achieves remarkable performance in terms of processing time, robustness and imperceptibility compared to previous studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.50
自引率
8.70%
发文量
656
审稿时长
29 days
期刊介绍: In 2022 the Journal of King Saud University - Computer and Information Sciences will become an author paid open access journal. Authors who submit their manuscript after October 31st 2021 will be asked to pay an Article Processing Charge (APC) after acceptance of their paper to make their work immediately, permanently, and freely accessible to all. The Journal of King Saud University Computer and Information Sciences is a refereed, international journal that covers all aspects of both foundations of computer and its practical applications.
期刊最新文献
DNE-YOLO: A method for apple fruit detection in Diverse Natural Environments Quantum computing enhanced knowledge tracing: Personalized KT research for mitigating data sparsity TFDNet: A triple focus diffusion network for object detection in urban congestion with accurate multi-scale feature fusion and real-time capability DA-Net: A classification-guided network for dental anomaly detection from dental and maxillofacial images Energy-efficient resource allocation for UAV-aided full-duplex OFDMA wireless powered IoT communication networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1