通过自监督深度引导进行图像去毛刺

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pattern Recognition Pub Date : 2024-09-30 DOI:10.1016/j.patcog.2024.111051
{"title":"通过自监督深度引导进行图像去毛刺","authors":"","doi":"10.1016/j.patcog.2024.111051","DOIUrl":null,"url":null,"abstract":"<div><div>Self-supervised learning methods have demonstrated promising benefits to feature representation learning for image dehazing tasks, especially for avoiding the laborious work of collecting hazy-clean image pairs, while also enabling better generalization abilities of the model. Despite the long-standing interests in depth estimation for image dehazing tasks, few works have fully explored the interactions between depth and dehazing tasks in an unsupervised manner. In this paper, a self-supervised image dehazing framework under the guidance of self-supervised depth estimation has been proposed, to fully exploit the interactions between depth and hazes for image dehazing. Specifically, the hazy image and the corresponding depth estimation are generated and optimized from the clear image in a dual-network self-supervised manner. The correlations between depth and hazy images are exploited in depth-guided hybrid attention Transformer blocks, which adaptively leverage both the cross-attention and self-attention to effectively model hazy densities via cross-modality fusion and capture global context information for better feature representations. In addition, the depth estimations of hazy images are further explored for the detection tasks on hazy images. Extensive experiments demonstrate that the depth estimation not only enhances the model generalization ability across different dehazing datasets, leading to state-of-the-art self-supervised dehazing performance, but also benefits downstream detection tasks on hazy images. Our code is available at <span><span>https://github.com/DongLiangSXU/Depth-Guidance-dehazing.git</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":49713,"journal":{"name":"Pattern Recognition","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image dehazing via self-supervised depth guidance\",\"authors\":\"\",\"doi\":\"10.1016/j.patcog.2024.111051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Self-supervised learning methods have demonstrated promising benefits to feature representation learning for image dehazing tasks, especially for avoiding the laborious work of collecting hazy-clean image pairs, while also enabling better generalization abilities of the model. Despite the long-standing interests in depth estimation for image dehazing tasks, few works have fully explored the interactions between depth and dehazing tasks in an unsupervised manner. In this paper, a self-supervised image dehazing framework under the guidance of self-supervised depth estimation has been proposed, to fully exploit the interactions between depth and hazes for image dehazing. Specifically, the hazy image and the corresponding depth estimation are generated and optimized from the clear image in a dual-network self-supervised manner. The correlations between depth and hazy images are exploited in depth-guided hybrid attention Transformer blocks, which adaptively leverage both the cross-attention and self-attention to effectively model hazy densities via cross-modality fusion and capture global context information for better feature representations. In addition, the depth estimations of hazy images are further explored for the detection tasks on hazy images. Extensive experiments demonstrate that the depth estimation not only enhances the model generalization ability across different dehazing datasets, leading to state-of-the-art self-supervised dehazing performance, but also benefits downstream detection tasks on hazy images. Our code is available at <span><span>https://github.com/DongLiangSXU/Depth-Guidance-dehazing.git</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":49713,\"journal\":{\"name\":\"Pattern Recognition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Recognition\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0031320324008021\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031320324008021","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

自监督学习方法在图像去毛刺任务的特征表征学习中表现出了很好的优势,尤其是避免了收集朦胧-干净图像对的繁重工作,同时还能使模型具有更好的泛化能力。尽管深度估计在图像去毛刺任务中的应用由来已久,但很少有研究以无监督的方式充分探索深度和去毛刺任务之间的相互作用。本文提出了一种在自监督深度估计指导下的自监督图像去毛刺框架,以充分利用深度和灰度之间的相互作用来进行图像去毛刺。具体来说,朦胧图像和相应的深度估计是以双网络自监督方式从清晰图像中生成并优化的。深度和朦胧图像之间的相关性在深度引导的混合注意力变换器块中得到利用,该变换器块自适应地利用交叉注意力和自我注意力,通过跨模态融合对朦胧密度进行有效建模,并捕捉全局上下文信息以获得更好的特征表示。此外,我们还进一步探索了朦胧图像的深度估计,以用于朦胧图像的检测任务。广泛的实验证明,深度估计不仅增强了模型在不同去毛刺数据集上的泛化能力,从而实现最先进的自监督去毛刺性能,而且还有利于朦胧图像的下游检测任务。我们的代码见 https://github.com/DongLiangSXU/Depth-Guidance-dehazing.git。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Image dehazing via self-supervised depth guidance
Self-supervised learning methods have demonstrated promising benefits to feature representation learning for image dehazing tasks, especially for avoiding the laborious work of collecting hazy-clean image pairs, while also enabling better generalization abilities of the model. Despite the long-standing interests in depth estimation for image dehazing tasks, few works have fully explored the interactions between depth and dehazing tasks in an unsupervised manner. In this paper, a self-supervised image dehazing framework under the guidance of self-supervised depth estimation has been proposed, to fully exploit the interactions between depth and hazes for image dehazing. Specifically, the hazy image and the corresponding depth estimation are generated and optimized from the clear image in a dual-network self-supervised manner. The correlations between depth and hazy images are exploited in depth-guided hybrid attention Transformer blocks, which adaptively leverage both the cross-attention and self-attention to effectively model hazy densities via cross-modality fusion and capture global context information for better feature representations. In addition, the depth estimations of hazy images are further explored for the detection tasks on hazy images. Extensive experiments demonstrate that the depth estimation not only enhances the model generalization ability across different dehazing datasets, leading to state-of-the-art self-supervised dehazing performance, but also benefits downstream detection tasks on hazy images. Our code is available at https://github.com/DongLiangSXU/Depth-Guidance-dehazing.git.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pattern Recognition
Pattern Recognition 工程技术-工程:电子与电气
CiteScore
14.40
自引率
16.20%
发文量
683
审稿时长
5.6 months
期刊介绍: The field of Pattern Recognition is both mature and rapidly evolving, playing a crucial role in various related fields such as computer vision, image processing, text analysis, and neural networks. It closely intersects with machine learning and is being applied in emerging areas like biometrics, bioinformatics, multimedia data analysis, and data science. The journal Pattern Recognition, established half a century ago during the early days of computer science, has since grown significantly in scope and influence.
期刊最新文献
Self-distillation with beta label smoothing-based cross-subject transfer learning for P300 classification L2T-DFM: Learning to Teach with Dynamic Fused Metric Image shadow removal via multi-scale deep Retinex decomposition ANNE: Adaptive Nearest Neighbours and Eigenvector-based sample selection for robust learning with noisy labels Consistency-driven feature scoring and regularization network for visible–infrared person re-identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1