{"title":"基于柔性 PEEK 基底的 (MoTe2)xSb1-x 薄膜的相变行为","authors":"Jinyang Huang , Yifeng Hu , Xiaoqin Zhu","doi":"10.1016/j.surfin.2024.105180","DOIUrl":null,"url":null,"abstract":"<div><div>Flexible information memory played a key role in flexible electronic devices and smart wearables. This paper was focused on the effect of flexible deformation on the properties of (MoTe<sub>2</sub>)<sub>x</sub>Sb<sub>1-x</sub> nano-phase-change films based on PEEK substrates. By placing the films at the finger, wrist, back of the hand and elbow and bending them, the resistance values showed periodic fluctuations with bending but the changes were not significant. After 100,000 bending cycles and 4,000 s of vibration, the films successfully achieved the transformation from a shapeless to a structured state. The stress caused by bending and vibration affects the surface roughness of the flexible film and weakens the adhesion between the film and the substrate. Flexible (MoTe<sub>2</sub>)<sub>0.07</sub>Sb<sub>0.93</sub> film electronics were prepared, and the phase change memory devices could realize reversible transitions between SET and RESET states with 100 ns pulse widths in the flat state, after 100,000 bending cycles, and after 4,000 s of vibration. These findings indicated that (MoTe<sub>2</sub>)<sub>0.07</sub>Sb<sub>0.93</sub> films based on flexible PEEK substrates had promising applications in the field of flexible phase change memory.</div></div>","PeriodicalId":22081,"journal":{"name":"Surfaces and Interfaces","volume":"54 ","pages":"Article 105180"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase transition behavior of (MoTe2)xSb1-x thin films based on flexible PEEK substrates\",\"authors\":\"Jinyang Huang , Yifeng Hu , Xiaoqin Zhu\",\"doi\":\"10.1016/j.surfin.2024.105180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Flexible information memory played a key role in flexible electronic devices and smart wearables. This paper was focused on the effect of flexible deformation on the properties of (MoTe<sub>2</sub>)<sub>x</sub>Sb<sub>1-x</sub> nano-phase-change films based on PEEK substrates. By placing the films at the finger, wrist, back of the hand and elbow and bending them, the resistance values showed periodic fluctuations with bending but the changes were not significant. After 100,000 bending cycles and 4,000 s of vibration, the films successfully achieved the transformation from a shapeless to a structured state. The stress caused by bending and vibration affects the surface roughness of the flexible film and weakens the adhesion between the film and the substrate. Flexible (MoTe<sub>2</sub>)<sub>0.07</sub>Sb<sub>0.93</sub> film electronics were prepared, and the phase change memory devices could realize reversible transitions between SET and RESET states with 100 ns pulse widths in the flat state, after 100,000 bending cycles, and after 4,000 s of vibration. These findings indicated that (MoTe<sub>2</sub>)<sub>0.07</sub>Sb<sub>0.93</sub> films based on flexible PEEK substrates had promising applications in the field of flexible phase change memory.</div></div>\",\"PeriodicalId\":22081,\"journal\":{\"name\":\"Surfaces and Interfaces\",\"volume\":\"54 \",\"pages\":\"Article 105180\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surfaces and Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468023024013361\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surfaces and Interfaces","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468023024013361","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Phase transition behavior of (MoTe2)xSb1-x thin films based on flexible PEEK substrates
Flexible information memory played a key role in flexible electronic devices and smart wearables. This paper was focused on the effect of flexible deformation on the properties of (MoTe2)xSb1-x nano-phase-change films based on PEEK substrates. By placing the films at the finger, wrist, back of the hand and elbow and bending them, the resistance values showed periodic fluctuations with bending but the changes were not significant. After 100,000 bending cycles and 4,000 s of vibration, the films successfully achieved the transformation from a shapeless to a structured state. The stress caused by bending and vibration affects the surface roughness of the flexible film and weakens the adhesion between the film and the substrate. Flexible (MoTe2)0.07Sb0.93 film electronics were prepared, and the phase change memory devices could realize reversible transitions between SET and RESET states with 100 ns pulse widths in the flat state, after 100,000 bending cycles, and after 4,000 s of vibration. These findings indicated that (MoTe2)0.07Sb0.93 films based on flexible PEEK substrates had promising applications in the field of flexible phase change memory.
期刊介绍:
The aim of the journal is to provide a respectful outlet for ''sound science'' papers in all research areas on surfaces and interfaces. We define sound science papers as papers that describe new and well-executed research, but that do not necessarily provide brand new insights or are merely a description of research results.
Surfaces and Interfaces publishes research papers in all fields of surface science which may not always find the right home on first submission to our Elsevier sister journals (Applied Surface, Surface and Coatings Technology, Thin Solid Films)