Zhihua Cui , Conghong Qu , Zhixia Zhang , Yaqing Jin , Jianghui Cai , Wensheng Zhang , Jinjun Chen
{"title":"具有信息熵优势的自适应区间多目标进化算法","authors":"Zhihua Cui , Conghong Qu , Zhixia Zhang , Yaqing Jin , Jianghui Cai , Wensheng Zhang , Jinjun Chen","doi":"10.1016/j.swevo.2024.101749","DOIUrl":null,"url":null,"abstract":"<div><div>Interval many-objective optimization problems (IMaOPs) involve more than three conflicting objectives with interval parameters. Various real-world applications under uncertainty can be modeled as IMaOPs to solve, so effectively handling IMaOPs is crucial for solving practical problems. This paper proposes an adaptive interval many-objective evolutionary algorithm with information entropy dominance (IMEA-IED) to tackle IMaOPs. Firstly, an interval dominance method based on information entropy is proposed to adaptively compare intervals. This method constructs convergence entropy and uncertainty entropy related to interval features and innovatively introduces the idea of using global information to regulate the direction of local interval comparison. Corresponding interval confidence levels are designed for different directions. Additionally, a novel niche strategy is designed through interval population partitioning. This strategy introduces a crowding distance increment for improved subpopulation comparison and employs an updated reference vector method to adjust the search regions for empty subpopulations. The IMEA-IED is compared with seven interval optimization algorithms on 60 interval test problems and a practical application. Empirical results affirm the superior performance of our proposed algorithm in tackling IMaOPs.</div></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"91 ","pages":"Article 101749"},"PeriodicalIF":8.2000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An adaptive interval many-objective evolutionary algorithm with information entropy dominance\",\"authors\":\"Zhihua Cui , Conghong Qu , Zhixia Zhang , Yaqing Jin , Jianghui Cai , Wensheng Zhang , Jinjun Chen\",\"doi\":\"10.1016/j.swevo.2024.101749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Interval many-objective optimization problems (IMaOPs) involve more than three conflicting objectives with interval parameters. Various real-world applications under uncertainty can be modeled as IMaOPs to solve, so effectively handling IMaOPs is crucial for solving practical problems. This paper proposes an adaptive interval many-objective evolutionary algorithm with information entropy dominance (IMEA-IED) to tackle IMaOPs. Firstly, an interval dominance method based on information entropy is proposed to adaptively compare intervals. This method constructs convergence entropy and uncertainty entropy related to interval features and innovatively introduces the idea of using global information to regulate the direction of local interval comparison. Corresponding interval confidence levels are designed for different directions. Additionally, a novel niche strategy is designed through interval population partitioning. This strategy introduces a crowding distance increment for improved subpopulation comparison and employs an updated reference vector method to adjust the search regions for empty subpopulations. The IMEA-IED is compared with seven interval optimization algorithms on 60 interval test problems and a practical application. Empirical results affirm the superior performance of our proposed algorithm in tackling IMaOPs.</div></div>\",\"PeriodicalId\":48682,\"journal\":{\"name\":\"Swarm and Evolutionary Computation\",\"volume\":\"91 \",\"pages\":\"Article 101749\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Swarm and Evolutionary Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210650224002876\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm and Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210650224002876","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
An adaptive interval many-objective evolutionary algorithm with information entropy dominance
Interval many-objective optimization problems (IMaOPs) involve more than three conflicting objectives with interval parameters. Various real-world applications under uncertainty can be modeled as IMaOPs to solve, so effectively handling IMaOPs is crucial for solving practical problems. This paper proposes an adaptive interval many-objective evolutionary algorithm with information entropy dominance (IMEA-IED) to tackle IMaOPs. Firstly, an interval dominance method based on information entropy is proposed to adaptively compare intervals. This method constructs convergence entropy and uncertainty entropy related to interval features and innovatively introduces the idea of using global information to regulate the direction of local interval comparison. Corresponding interval confidence levels are designed for different directions. Additionally, a novel niche strategy is designed through interval population partitioning. This strategy introduces a crowding distance increment for improved subpopulation comparison and employs an updated reference vector method to adjust the search regions for empty subpopulations. The IMEA-IED is compared with seven interval optimization algorithms on 60 interval test problems and a practical application. Empirical results affirm the superior performance of our proposed algorithm in tackling IMaOPs.
期刊介绍:
Swarm and Evolutionary Computation is a pioneering peer-reviewed journal focused on the latest research and advancements in nature-inspired intelligent computation using swarm and evolutionary algorithms. It covers theoretical, experimental, and practical aspects of these paradigms and their hybrids, promoting interdisciplinary research. The journal prioritizes the publication of high-quality, original articles that push the boundaries of evolutionary computation and swarm intelligence. Additionally, it welcomes survey papers on current topics and novel applications. Topics of interest include but are not limited to: Genetic Algorithms, and Genetic Programming, Evolution Strategies, and Evolutionary Programming, Differential Evolution, Artificial Immune Systems, Particle Swarms, Ant Colony, Bacterial Foraging, Artificial Bees, Fireflies Algorithm, Harmony Search, Artificial Life, Digital Organisms, Estimation of Distribution Algorithms, Stochastic Diffusion Search, Quantum Computing, Nano Computing, Membrane Computing, Human-centric Computing, Hybridization of Algorithms, Memetic Computing, Autonomic Computing, Self-organizing systems, Combinatorial, Discrete, Binary, Constrained, Multi-objective, Multi-modal, Dynamic, and Large-scale Optimization.