{"title":"档案辅助多模式多目标进化算法","authors":"Peng Chen , Zhimeng Li , Kangjia Qiao , P.N. Suganthan , Xuanxuan Ban , Kunjie Yu , Caitong Yue , Jing Liang","doi":"10.1016/j.swevo.2024.101738","DOIUrl":null,"url":null,"abstract":"<div><div>The multi-modal multi-objective optimization problems (MMOPs) pertain to characteristic of the decision space that exhibit multiple sets of Pareto optimal solutions that are either identical or similar. The resolution of these problems necessitates the utilization of optimization algorithms to locate multiple Pareto sets (PSs). However, existing multi-modal multi-objective evolutionary algorithms (MMOEAs) encounter difficulties in concurrently enhancing solution quality in both decision space and objective space. In order to deal with this predicament, this paper presents an Archive-assisted Multi-modal Multi-objective Evolutionary Algorithm, called A-MMOEA. This algorithm maintains a main population and an external archive, which is leveraged to improve the fault tolerance of individual screening. To augment the quality of solutions in the archive, an archive evolution mechanism (AEM) is formulated for updating the archive and an archive output mechanism (AOM) is used to output the final solutions. Both mechanisms incorporate a comprehensive crowding distance metric that employs objective space crowding distance to facilitate the calculation of decision space crowding distance. Besides, a data screening method is employed in the AOM to alleviate the negative impact on the final results arising from undesirable individuals resulting from diversity search. Finally, in order to enable individuals to effectively escape the limitation of niches and further enhance diversity of population, a diversity search method with level-based evolution mechanism (DSMLBEM) is proposed. The proposed algorithm’s performance is evaluated through extensive experiments conducted on two distinct test sets. Final results indicate that, in comparison to other commonly used algorithms, this approach exhibits favorable performance.</div></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"91 ","pages":"Article 101738"},"PeriodicalIF":8.2000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An archive-assisted multi-modal multi-objective evolutionary algorithm\",\"authors\":\"Peng Chen , Zhimeng Li , Kangjia Qiao , P.N. Suganthan , Xuanxuan Ban , Kunjie Yu , Caitong Yue , Jing Liang\",\"doi\":\"10.1016/j.swevo.2024.101738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The multi-modal multi-objective optimization problems (MMOPs) pertain to characteristic of the decision space that exhibit multiple sets of Pareto optimal solutions that are either identical or similar. The resolution of these problems necessitates the utilization of optimization algorithms to locate multiple Pareto sets (PSs). However, existing multi-modal multi-objective evolutionary algorithms (MMOEAs) encounter difficulties in concurrently enhancing solution quality in both decision space and objective space. In order to deal with this predicament, this paper presents an Archive-assisted Multi-modal Multi-objective Evolutionary Algorithm, called A-MMOEA. This algorithm maintains a main population and an external archive, which is leveraged to improve the fault tolerance of individual screening. To augment the quality of solutions in the archive, an archive evolution mechanism (AEM) is formulated for updating the archive and an archive output mechanism (AOM) is used to output the final solutions. Both mechanisms incorporate a comprehensive crowding distance metric that employs objective space crowding distance to facilitate the calculation of decision space crowding distance. Besides, a data screening method is employed in the AOM to alleviate the negative impact on the final results arising from undesirable individuals resulting from diversity search. Finally, in order to enable individuals to effectively escape the limitation of niches and further enhance diversity of population, a diversity search method with level-based evolution mechanism (DSMLBEM) is proposed. The proposed algorithm’s performance is evaluated through extensive experiments conducted on two distinct test sets. Final results indicate that, in comparison to other commonly used algorithms, this approach exhibits favorable performance.</div></div>\",\"PeriodicalId\":48682,\"journal\":{\"name\":\"Swarm and Evolutionary Computation\",\"volume\":\"91 \",\"pages\":\"Article 101738\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Swarm and Evolutionary Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210650224002761\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm and Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210650224002761","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
An archive-assisted multi-modal multi-objective evolutionary algorithm
The multi-modal multi-objective optimization problems (MMOPs) pertain to characteristic of the decision space that exhibit multiple sets of Pareto optimal solutions that are either identical or similar. The resolution of these problems necessitates the utilization of optimization algorithms to locate multiple Pareto sets (PSs). However, existing multi-modal multi-objective evolutionary algorithms (MMOEAs) encounter difficulties in concurrently enhancing solution quality in both decision space and objective space. In order to deal with this predicament, this paper presents an Archive-assisted Multi-modal Multi-objective Evolutionary Algorithm, called A-MMOEA. This algorithm maintains a main population and an external archive, which is leveraged to improve the fault tolerance of individual screening. To augment the quality of solutions in the archive, an archive evolution mechanism (AEM) is formulated for updating the archive and an archive output mechanism (AOM) is used to output the final solutions. Both mechanisms incorporate a comprehensive crowding distance metric that employs objective space crowding distance to facilitate the calculation of decision space crowding distance. Besides, a data screening method is employed in the AOM to alleviate the negative impact on the final results arising from undesirable individuals resulting from diversity search. Finally, in order to enable individuals to effectively escape the limitation of niches and further enhance diversity of population, a diversity search method with level-based evolution mechanism (DSMLBEM) is proposed. The proposed algorithm’s performance is evaluated through extensive experiments conducted on two distinct test sets. Final results indicate that, in comparison to other commonly used algorithms, this approach exhibits favorable performance.
期刊介绍:
Swarm and Evolutionary Computation is a pioneering peer-reviewed journal focused on the latest research and advancements in nature-inspired intelligent computation using swarm and evolutionary algorithms. It covers theoretical, experimental, and practical aspects of these paradigms and their hybrids, promoting interdisciplinary research. The journal prioritizes the publication of high-quality, original articles that push the boundaries of evolutionary computation and swarm intelligence. Additionally, it welcomes survey papers on current topics and novel applications. Topics of interest include but are not limited to: Genetic Algorithms, and Genetic Programming, Evolution Strategies, and Evolutionary Programming, Differential Evolution, Artificial Immune Systems, Particle Swarms, Ant Colony, Bacterial Foraging, Artificial Bees, Fireflies Algorithm, Harmony Search, Artificial Life, Digital Organisms, Estimation of Distribution Algorithms, Stochastic Diffusion Search, Quantum Computing, Nano Computing, Membrane Computing, Human-centric Computing, Hybridization of Algorithms, Memetic Computing, Autonomic Computing, Self-organizing systems, Combinatorial, Discrete, Binary, Constrained, Multi-objective, Multi-modal, Dynamic, and Large-scale Optimization.