基于连环自动编码器的工业过程故障检测

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Chemical Engineering Pub Date : 2024-10-03 DOI:10.1016/j.compchemeng.2024.108887
Cheng Ji , Fangyuan Ma , Jingde Wang , Wei Sun , Ahmet Palazoglu
{"title":"基于连环自动编码器的工业过程故障检测","authors":"Cheng Ji ,&nbsp;Fangyuan Ma ,&nbsp;Jingde Wang ,&nbsp;Wei Sun ,&nbsp;Ahmet Palazoglu","doi":"10.1016/j.compchemeng.2024.108887","DOIUrl":null,"url":null,"abstract":"<div><div>Although deep autoencoders excel at extracting intricate features, their application in process monitoring is limited by the requirement for large sample sizes and interpretability of latent representations. This work presents a special deep learning structure named Siamese network to detect abnormal deviations in nonlinear dynamic processes. By leveraging the capability of Siamese architecture to process multiple inputs simultaneously, the training sample size expands exponentially, which enhances the learning potential of the model. Furthermore, a long short-term memory unit is integrated to enable the capture of long-term process dynamics. To refine the distribution of latent features extracted from diverse data types, a contrastive loss function is proposed, which strengthens the model's fault detection capabilities and enhances its interpretation of latent representations. Then <em>T</em><sup>2</sup> statistic is established on the latent space to perform fault detection. The effectiveness of the method is demonstrated through case studies on simulation processes and an industrial process.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"192 ","pages":"Article 108887"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Industrial Process Fault Detection Based on Siamese Recurrent Autoencoder\",\"authors\":\"Cheng Ji ,&nbsp;Fangyuan Ma ,&nbsp;Jingde Wang ,&nbsp;Wei Sun ,&nbsp;Ahmet Palazoglu\",\"doi\":\"10.1016/j.compchemeng.2024.108887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Although deep autoencoders excel at extracting intricate features, their application in process monitoring is limited by the requirement for large sample sizes and interpretability of latent representations. This work presents a special deep learning structure named Siamese network to detect abnormal deviations in nonlinear dynamic processes. By leveraging the capability of Siamese architecture to process multiple inputs simultaneously, the training sample size expands exponentially, which enhances the learning potential of the model. Furthermore, a long short-term memory unit is integrated to enable the capture of long-term process dynamics. To refine the distribution of latent features extracted from diverse data types, a contrastive loss function is proposed, which strengthens the model's fault detection capabilities and enhances its interpretation of latent representations. Then <em>T</em><sup>2</sup> statistic is established on the latent space to perform fault detection. The effectiveness of the method is demonstrated through case studies on simulation processes and an industrial process.</div></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":\"192 \",\"pages\":\"Article 108887\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098135424003053\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424003053","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

虽然深度自动编码器擅长提取复杂的特征,但由于需要大量样本和潜在表征的可解释性,它们在过程监控中的应用受到了限制。本研究提出了一种名为 Siamese 网络的特殊深度学习结构,用于检测非线性动态过程中的异常偏差。利用 Siamese 架构同时处理多个输入的能力,训练样本规模呈指数级扩大,从而增强了模型的学习潜力。此外,还集成了一个长期短期记忆单元,以捕捉长期过程动态。为了完善从不同数据类型中提取的潜在特征的分布,我们提出了一种对比损失函数,它增强了模型的故障检测能力,并提高了模型对潜在表征的解释能力。然后,在潜空间上建立 T2 统计,以进行故障检测。通过对模拟过程和工业过程的案例研究,证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Industrial Process Fault Detection Based on Siamese Recurrent Autoencoder
Although deep autoencoders excel at extracting intricate features, their application in process monitoring is limited by the requirement for large sample sizes and interpretability of latent representations. This work presents a special deep learning structure named Siamese network to detect abnormal deviations in nonlinear dynamic processes. By leveraging the capability of Siamese architecture to process multiple inputs simultaneously, the training sample size expands exponentially, which enhances the learning potential of the model. Furthermore, a long short-term memory unit is integrated to enable the capture of long-term process dynamics. To refine the distribution of latent features extracted from diverse data types, a contrastive loss function is proposed, which strengthens the model's fault detection capabilities and enhances its interpretation of latent representations. Then T2 statistic is established on the latent space to perform fault detection. The effectiveness of the method is demonstrated through case studies on simulation processes and an industrial process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
期刊最新文献
The bullwhip effect, market competition and standard deviation ratio in two parallel supply chains CADET-Julia: Efficient and versatile, open-source simulator for batch chromatography in Julia Computer aided formulation design based on molecular dynamics simulation: Detergents with fragrance Model-based real-time optimization in continuous pharmaceutical manufacturing Risk-averse supply chain management via robust reinforcement learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1