Cheng Ji , Fangyuan Ma , Jingde Wang , Wei Sun , Ahmet Palazoglu
{"title":"基于连环自动编码器的工业过程故障检测","authors":"Cheng Ji , Fangyuan Ma , Jingde Wang , Wei Sun , Ahmet Palazoglu","doi":"10.1016/j.compchemeng.2024.108887","DOIUrl":null,"url":null,"abstract":"<div><div>Although deep autoencoders excel at extracting intricate features, their application in process monitoring is limited by the requirement for large sample sizes and interpretability of latent representations. This work presents a special deep learning structure named Siamese network to detect abnormal deviations in nonlinear dynamic processes. By leveraging the capability of Siamese architecture to process multiple inputs simultaneously, the training sample size expands exponentially, which enhances the learning potential of the model. Furthermore, a long short-term memory unit is integrated to enable the capture of long-term process dynamics. To refine the distribution of latent features extracted from diverse data types, a contrastive loss function is proposed, which strengthens the model's fault detection capabilities and enhances its interpretation of latent representations. Then <em>T</em><sup>2</sup> statistic is established on the latent space to perform fault detection. The effectiveness of the method is demonstrated through case studies on simulation processes and an industrial process.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"192 ","pages":"Article 108887"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Industrial Process Fault Detection Based on Siamese Recurrent Autoencoder\",\"authors\":\"Cheng Ji , Fangyuan Ma , Jingde Wang , Wei Sun , Ahmet Palazoglu\",\"doi\":\"10.1016/j.compchemeng.2024.108887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Although deep autoencoders excel at extracting intricate features, their application in process monitoring is limited by the requirement for large sample sizes and interpretability of latent representations. This work presents a special deep learning structure named Siamese network to detect abnormal deviations in nonlinear dynamic processes. By leveraging the capability of Siamese architecture to process multiple inputs simultaneously, the training sample size expands exponentially, which enhances the learning potential of the model. Furthermore, a long short-term memory unit is integrated to enable the capture of long-term process dynamics. To refine the distribution of latent features extracted from diverse data types, a contrastive loss function is proposed, which strengthens the model's fault detection capabilities and enhances its interpretation of latent representations. Then <em>T</em><sup>2</sup> statistic is established on the latent space to perform fault detection. The effectiveness of the method is demonstrated through case studies on simulation processes and an industrial process.</div></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":\"192 \",\"pages\":\"Article 108887\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098135424003053\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424003053","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Industrial Process Fault Detection Based on Siamese Recurrent Autoencoder
Although deep autoencoders excel at extracting intricate features, their application in process monitoring is limited by the requirement for large sample sizes and interpretability of latent representations. This work presents a special deep learning structure named Siamese network to detect abnormal deviations in nonlinear dynamic processes. By leveraging the capability of Siamese architecture to process multiple inputs simultaneously, the training sample size expands exponentially, which enhances the learning potential of the model. Furthermore, a long short-term memory unit is integrated to enable the capture of long-term process dynamics. To refine the distribution of latent features extracted from diverse data types, a contrastive loss function is proposed, which strengthens the model's fault detection capabilities and enhances its interpretation of latent representations. Then T2 statistic is established on the latent space to perform fault detection. The effectiveness of the method is demonstrated through case studies on simulation processes and an industrial process.
期刊介绍:
Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.