开发新型全晶闸管混合直流断路器,结合真空和气体集成串联开关

IF 5 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Electrical Power & Energy Systems Pub Date : 2024-10-04 DOI:10.1016/j.ijepes.2024.110257
{"title":"开发新型全晶闸管混合直流断路器,结合真空和气体集成串联开关","authors":"","doi":"10.1016/j.ijepes.2024.110257","DOIUrl":null,"url":null,"abstract":"<div><div>In order to accelerate the fault current transfer rate of hybrid DC circuit breaker (HDCCB) and reduce the cost. A novel full thyristors HDCCB combining vacuum and gas integrated series switch is proposed in this paper, which accelerates the fault current transferred. Moreover, the breaking of higher current levels and lower cost by using the full thyristors to replace the IGBT and other power electronic (PE) devices are realized. The operation of proposed HDCCB is analyzed in detail, and the theoretical numerical model is derived. With the key parameters optimized in terms of the operation HDCCB, the breaking current capability and the effectiveness are verified by the simulation model. Based on this, preliminary tests from a developed low-power prototype are presented and verified the performance of the proposed novel HDCCB.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a novel full thyristors hybrid DC circuit breaker combining vacuum and gas integrated series switch\",\"authors\":\"\",\"doi\":\"10.1016/j.ijepes.2024.110257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In order to accelerate the fault current transfer rate of hybrid DC circuit breaker (HDCCB) and reduce the cost. A novel full thyristors HDCCB combining vacuum and gas integrated series switch is proposed in this paper, which accelerates the fault current transferred. Moreover, the breaking of higher current levels and lower cost by using the full thyristors to replace the IGBT and other power electronic (PE) devices are realized. The operation of proposed HDCCB is analyzed in detail, and the theoretical numerical model is derived. With the key parameters optimized in terms of the operation HDCCB, the breaking current capability and the effectiveness are verified by the simulation model. Based on this, preliminary tests from a developed low-power prototype are presented and verified the performance of the proposed novel HDCCB.</div></div>\",\"PeriodicalId\":50326,\"journal\":{\"name\":\"International Journal of Electrical Power & Energy Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical Power & Energy Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142061524004782\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical Power & Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142061524004782","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

为了加快混合直流断路器(HDCCB)的故障电流传输速率并降低成本。本文提出了一种新型全晶闸管混合直流断路器(HDCCB),结合真空和气体集成串联开关,加快了故障电流的传输速度。此外,通过使用全晶闸管替代 IGBT 和其他电力电子(PE)器件,实现了更高电流水平和更低成本的分断。本文详细分析了所提出的 HDCCB 的工作原理,并推导出理论数值模型。通过优化 HDCCB 运行的关键参数,仿真模型验证了分断电流能力和有效性。在此基础上,对开发的低功耗原型进行了初步测试,验证了所提出的新型 HDCCB 的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of a novel full thyristors hybrid DC circuit breaker combining vacuum and gas integrated series switch
In order to accelerate the fault current transfer rate of hybrid DC circuit breaker (HDCCB) and reduce the cost. A novel full thyristors HDCCB combining vacuum and gas integrated series switch is proposed in this paper, which accelerates the fault current transferred. Moreover, the breaking of higher current levels and lower cost by using the full thyristors to replace the IGBT and other power electronic (PE) devices are realized. The operation of proposed HDCCB is analyzed in detail, and the theoretical numerical model is derived. With the key parameters optimized in terms of the operation HDCCB, the breaking current capability and the effectiveness are verified by the simulation model. Based on this, preliminary tests from a developed low-power prototype are presented and verified the performance of the proposed novel HDCCB.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Electrical Power & Energy Systems
International Journal of Electrical Power & Energy Systems 工程技术-工程:电子与电气
CiteScore
12.10
自引率
17.30%
发文量
1022
审稿时长
51 days
期刊介绍: The journal covers theoretical developments in electrical power and energy systems and their applications. The coverage embraces: generation and network planning; reliability; long and short term operation; expert systems; neural networks; object oriented systems; system control centres; database and information systems; stock and parameter estimation; system security and adequacy; network theory, modelling and computation; small and large system dynamics; dynamic model identification; on-line control including load and switching control; protection; distribution systems; energy economics; impact of non-conventional systems; and man-machine interfaces. As well as original research papers, the journal publishes short contributions, book reviews and conference reports. All papers are peer-reviewed by at least two referees.
期刊最新文献
Low-frequency oscillations in AC railway traction power systems: Train input admittance calculation and stability analysis Real-time detection of insider attacks on substation automation systems using short length orthogonal wavelet filters and OPAL-RT An energy trade-off management strategy for hybrid ships based on event-triggered model predictive control Towards non-virtual inertia control of renewable energy for frequency regulation: Modeling, analysis and new control scheme Damping control in renewable-integrated power systems: A comparative analysis of PSS, POD-P, and POD-Q strategies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1