Amy J. Myers , Claire E. Harnett , Eoghan P. Holohan , John G. Ryan , Edgar U. Zorn , Thomas R. Walter , Michael J. Heap
{"title":"内聚力和粘度对熔岩穹丘在静止后生长的影响","authors":"Amy J. Myers , Claire E. Harnett , Eoghan P. Holohan , John G. Ryan , Edgar U. Zorn , Thomas R. Walter , Michael J. Heap","doi":"10.1016/j.jvolgeores.2024.108196","DOIUrl":null,"url":null,"abstract":"<div><div>Lava domes result from effusive eruption of high viscosity lava. These viscous lava extrusions range in shape from flat-topped domes with small height-to-width aspect ratios, to spine-like columns exhibiting large height-to-width aspect ratios. A primary control on morphology during early dome growth is thought to be the variation in rheological characteristics of extruded material. In this work, we present new scaled analogue models of lava dome growth that consider extrusion of a frictional plastic upper-conduit plug followed by viscous magma. We simulate the brittle plug using a sand-plaster mixture, the cohesion of which is varied by plaster content. We model the magma using sugar syrup, the viscosity of which is controlled by the weight percent of added crystalline sugar. The models both qualitatively and quantitatively reproduce part of the spectrum of natural dome morphology not previously obtained in most past analogue modelling studies. Model aspect ratios of 0.02 to 0.9 capture approximately 90 % of the reported aspect ratio variation in nature. Increasing plug cohesion results in extrusions with higher aspect ratios and spinier morphologies. Low viscosity fluid typically erupts through the brittle dome, whilst high viscosity fluid tends to promote endogenous growth or emerge as exogenous lobes. Particle Image Velocimetry shows that fracture localisation at the dome surface is cohesion-dependent, and eruption of fluid follows shear fractures within the dome. Where fluid remains contained within the dome, we see lateral spread leading to a wider and flatter dome morphology. Evolution of lava dome morphology, deformation, and associated hazards is guided by the complex rheological properties of the extruded material; we suggest that during episodic dome growth, these properties are largely defined in the conduit prior to their eruption.</div></div>","PeriodicalId":54753,"journal":{"name":"Journal of Volcanology and Geothermal Research","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of cohesion and viscosity on lava dome growth following repose\",\"authors\":\"Amy J. Myers , Claire E. Harnett , Eoghan P. Holohan , John G. Ryan , Edgar U. Zorn , Thomas R. Walter , Michael J. Heap\",\"doi\":\"10.1016/j.jvolgeores.2024.108196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Lava domes result from effusive eruption of high viscosity lava. These viscous lava extrusions range in shape from flat-topped domes with small height-to-width aspect ratios, to spine-like columns exhibiting large height-to-width aspect ratios. A primary control on morphology during early dome growth is thought to be the variation in rheological characteristics of extruded material. In this work, we present new scaled analogue models of lava dome growth that consider extrusion of a frictional plastic upper-conduit plug followed by viscous magma. We simulate the brittle plug using a sand-plaster mixture, the cohesion of which is varied by plaster content. We model the magma using sugar syrup, the viscosity of which is controlled by the weight percent of added crystalline sugar. The models both qualitatively and quantitatively reproduce part of the spectrum of natural dome morphology not previously obtained in most past analogue modelling studies. Model aspect ratios of 0.02 to 0.9 capture approximately 90 % of the reported aspect ratio variation in nature. Increasing plug cohesion results in extrusions with higher aspect ratios and spinier morphologies. Low viscosity fluid typically erupts through the brittle dome, whilst high viscosity fluid tends to promote endogenous growth or emerge as exogenous lobes. Particle Image Velocimetry shows that fracture localisation at the dome surface is cohesion-dependent, and eruption of fluid follows shear fractures within the dome. Where fluid remains contained within the dome, we see lateral spread leading to a wider and flatter dome morphology. Evolution of lava dome morphology, deformation, and associated hazards is guided by the complex rheological properties of the extruded material; we suggest that during episodic dome growth, these properties are largely defined in the conduit prior to their eruption.</div></div>\",\"PeriodicalId\":54753,\"journal\":{\"name\":\"Journal of Volcanology and Geothermal Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Volcanology and Geothermal Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377027324001884\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Volcanology and Geothermal Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377027324001884","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Effects of cohesion and viscosity on lava dome growth following repose
Lava domes result from effusive eruption of high viscosity lava. These viscous lava extrusions range in shape from flat-topped domes with small height-to-width aspect ratios, to spine-like columns exhibiting large height-to-width aspect ratios. A primary control on morphology during early dome growth is thought to be the variation in rheological characteristics of extruded material. In this work, we present new scaled analogue models of lava dome growth that consider extrusion of a frictional plastic upper-conduit plug followed by viscous magma. We simulate the brittle plug using a sand-plaster mixture, the cohesion of which is varied by plaster content. We model the magma using sugar syrup, the viscosity of which is controlled by the weight percent of added crystalline sugar. The models both qualitatively and quantitatively reproduce part of the spectrum of natural dome morphology not previously obtained in most past analogue modelling studies. Model aspect ratios of 0.02 to 0.9 capture approximately 90 % of the reported aspect ratio variation in nature. Increasing plug cohesion results in extrusions with higher aspect ratios and spinier morphologies. Low viscosity fluid typically erupts through the brittle dome, whilst high viscosity fluid tends to promote endogenous growth or emerge as exogenous lobes. Particle Image Velocimetry shows that fracture localisation at the dome surface is cohesion-dependent, and eruption of fluid follows shear fractures within the dome. Where fluid remains contained within the dome, we see lateral spread leading to a wider and flatter dome morphology. Evolution of lava dome morphology, deformation, and associated hazards is guided by the complex rheological properties of the extruded material; we suggest that during episodic dome growth, these properties are largely defined in the conduit prior to their eruption.
期刊介绍:
An international research journal with focus on volcanic and geothermal processes and their impact on the environment and society.
Submission of papers covering the following aspects of volcanology and geothermal research are encouraged:
(1) Geological aspects of volcanic systems: volcano stratigraphy, structure and tectonic influence; eruptive history; evolution of volcanic landforms; eruption style and progress; dispersal patterns of lava and ash; analysis of real-time eruption observations.
(2) Geochemical and petrological aspects of volcanic rocks: magma genesis and evolution; crystallization; volatile compositions, solubility, and degassing; volcanic petrography and textural analysis.
(3) Hydrology, geochemistry and measurement of volcanic and hydrothermal fluids: volcanic gas emissions; fumaroles and springs; crater lakes; hydrothermal mineralization.
(4) Geophysical aspects of volcanic systems: physical properties of volcanic rocks and magmas; heat flow studies; volcano seismology, geodesy and remote sensing.
(5) Computational modeling and experimental simulation of magmatic and hydrothermal processes: eruption dynamics; magma transport and storage; plume dynamics and ash dispersal; lava flow dynamics; hydrothermal fluid flow; thermodynamics of aqueous fluids and melts.
(6) Volcano hazard and risk research: hazard zonation methodology, development of forecasting tools; assessment techniques for vulnerability and impact.