通过 DFT 研究探索 Fe2ZrAs Heusler 合金的物理、磁性、光自旋电子学和热电特性

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Journal of Physics and Chemistry of Solids Pub Date : 2024-10-01 DOI:10.1016/j.jpcs.2024.112368
{"title":"通过 DFT 研究探索 Fe2ZrAs Heusler 合金的物理、磁性、光自旋电子学和热电特性","authors":"","doi":"10.1016/j.jpcs.2024.112368","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we investigated the structural, thermoelectric, optical, and magnetic properties of the Fe<sub>2</sub>ZrAs Heusler alloy using ab initio calculations based on density functional theory, the full-potential linearised augmented plane wave (FP-LAPW) method, and semi-classical Boltzmann transport theory. The calculated total spin moment is found to be approximately 1.0 μB at the equilibrium lattice constant, which remarkably agrees with the Slater-Pauling rule. In the spin-down channel, the Fe<sub>2</sub>ZrAs compound exhibits direct semiconductor behaviour, and at the Γ -Γ symmetry point, a direct band gap of roughly 0.477 eV has been observed. A halfmetallic bandgap of 0.379 (eV) has also been calculated. Thermoelectric characteristics between 100 and 1200 K were computed. The maximum value of Seebeck coefficient S is 950 μV/k μV K<sup>−1</sup> at 300 K. In a similar vein, S slightly decreases to 250 μV K<sup>−1</sup> at 1200 K. The n-type doped compound has a higher thermal conductivity than the p-type doped compound. Thermal conductivity increased in direct proportion to chemical potential. Optical calculations demonstrated an imaginary dielectric function threshold for the spin-down channel. Due to the free-electron effects, spin-dependent optical calculations revealed that the intraband contributions only had an impact on the spin-up optical spectra. Overall, the findings supported the idea that the intraband contribution played a primary role in the optical spectra of low-energy visible and infrared light.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the physical, magnetic, opto-spintronics and thermoelectric properties of Fe2ZrAs Heusler Alloy through DFT study\",\"authors\":\"\",\"doi\":\"10.1016/j.jpcs.2024.112368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, we investigated the structural, thermoelectric, optical, and magnetic properties of the Fe<sub>2</sub>ZrAs Heusler alloy using ab initio calculations based on density functional theory, the full-potential linearised augmented plane wave (FP-LAPW) method, and semi-classical Boltzmann transport theory. The calculated total spin moment is found to be approximately 1.0 μB at the equilibrium lattice constant, which remarkably agrees with the Slater-Pauling rule. In the spin-down channel, the Fe<sub>2</sub>ZrAs compound exhibits direct semiconductor behaviour, and at the Γ -Γ symmetry point, a direct band gap of roughly 0.477 eV has been observed. A halfmetallic bandgap of 0.379 (eV) has also been calculated. Thermoelectric characteristics between 100 and 1200 K were computed. The maximum value of Seebeck coefficient S is 950 μV/k μV K<sup>−1</sup> at 300 K. In a similar vein, S slightly decreases to 250 μV K<sup>−1</sup> at 1200 K. The n-type doped compound has a higher thermal conductivity than the p-type doped compound. Thermal conductivity increased in direct proportion to chemical potential. Optical calculations demonstrated an imaginary dielectric function threshold for the spin-down channel. Due to the free-electron effects, spin-dependent optical calculations revealed that the intraband contributions only had an impact on the spin-up optical spectra. Overall, the findings supported the idea that the intraband contribution played a primary role in the optical spectra of low-energy visible and infrared light.</div></div>\",\"PeriodicalId\":16811,\"journal\":{\"name\":\"Journal of Physics and Chemistry of Solids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics and Chemistry of Solids\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022369724005031\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369724005031","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们利用基于密度泛函理论、全电位线性化增强平面波 (FP-LAPW) 方法和半经典波尔兹曼输运理论的原子序数计算,研究了 Fe2ZrAs Heusler 合金的结构、热电、光学和磁学特性。计算发现,在平衡晶格常数下,总自旋矩约为 1.0 μB,这与斯莱特-保龄法则非常吻合。在自旋下降通道中,Fe2ZrAs 化合物表现出直接半导体行为,在 Γ -Γ 对称点处,观察到大约 0.477 eV 的直接带隙。此外,还计算出了 0.379(eV)的半金属带隙。计算了 100 至 1200 K 之间的热电特性。在 300 K 时,塞贝克系数 S 的最大值为 950 μV/k μV K-1;同样,在 1200 K 时,S 略微下降到 250 μV K-1。热导率的增加与化学势成正比。光学计算证明了自旋下降通道的虚介电常数阈值。由于自由电子效应,自旋相关光学计算显示带内贡献只对自旋上升光学光谱有影响。总之,研究结果支持带内贡献在低能可见光和红外光的光学光谱中起主要作用的观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring the physical, magnetic, opto-spintronics and thermoelectric properties of Fe2ZrAs Heusler Alloy through DFT study
In this work, we investigated the structural, thermoelectric, optical, and magnetic properties of the Fe2ZrAs Heusler alloy using ab initio calculations based on density functional theory, the full-potential linearised augmented plane wave (FP-LAPW) method, and semi-classical Boltzmann transport theory. The calculated total spin moment is found to be approximately 1.0 μB at the equilibrium lattice constant, which remarkably agrees with the Slater-Pauling rule. In the spin-down channel, the Fe2ZrAs compound exhibits direct semiconductor behaviour, and at the Γ -Γ symmetry point, a direct band gap of roughly 0.477 eV has been observed. A halfmetallic bandgap of 0.379 (eV) has also been calculated. Thermoelectric characteristics between 100 and 1200 K were computed. The maximum value of Seebeck coefficient S is 950 μV/k μV K−1 at 300 K. In a similar vein, S slightly decreases to 250 μV K−1 at 1200 K. The n-type doped compound has a higher thermal conductivity than the p-type doped compound. Thermal conductivity increased in direct proportion to chemical potential. Optical calculations demonstrated an imaginary dielectric function threshold for the spin-down channel. Due to the free-electron effects, spin-dependent optical calculations revealed that the intraband contributions only had an impact on the spin-up optical spectra. Overall, the findings supported the idea that the intraband contribution played a primary role in the optical spectra of low-energy visible and infrared light.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics and Chemistry of Solids
Journal of Physics and Chemistry of Solids 工程技术-化学综合
CiteScore
7.80
自引率
2.50%
发文量
605
审稿时长
40 days
期刊介绍: The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems. Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal: Low-dimensional systems Exotic states of quantum electron matter including topological phases Energy conversion and storage Interfaces, nanoparticles and catalysts.
期刊最新文献
Synergistic interface engineering of tungsten disulfide (WS2) with iron-cobalt-tellurium-zirconium (FeCoTeZr) for supercapattery devices Phononic, photonic and excitonic properties of ∼5 nm diameter aligned CdSe nanowires Enhancement of sodium ion conductivity in phosphate-based glass-ceramics by chemical substitution approach Effects of ferrous ion doping on the structural, optical, and electronic properties of tin tungstate materials High-performance NiMn2O4@MXene nanocomposites for aqueous zinc-ion battery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1