{"title":"探索环保型草晶岩太阳能电池 32% 的效率:数值研究","authors":"Sumit Choudhary , Rahutosh Ranjan , Manish Nath Tripathi , Neelabh Srivastava , Arvind Kumar Sharma , Masamichi Yoshimura , Li Chang , Rajanish N. Tiwari","doi":"10.1016/j.jpcs.2024.112369","DOIUrl":null,"url":null,"abstract":"<div><div>Recently, solar cells have appeared as a promising solution to meet the increasing energy demand. However, their large-scale commercial use is limited by issues such as toxicity (Cd, Pb, etc), high manufacturing costs, lower stability, and low efficiency. In this perspective, kusachiite solar cells (KSCs) are environmentally friendly, long-term stable, and easy to manufacture. Thus, in this work, kusachiite (CuBi<sub>2</sub>O<sub>4</sub>) is used as an absorber layer, with NiO and SrTiO<sub>3</sub> serving as the hole transport material (HTM) and an electron transport layer (ETL), respectively. The KSCs, with a structure of FTO/SrTiO<sub>3</sub>/CuBi<sub>2</sub>O<sub>4</sub>/NiO/Au, are numerically simulated. Maximum power conversion efficiency is achieved by optimizing several photovoltaic parameters, such as the thickness and doping density of the ETL, absorber, and HTM. The optimized thicknesses for the HTL, absorber layer, and ETL are 1.5 μm, 2.28 μm, and 0.02 μm, respectively. The designed KSCs exhibit an efficiency eta (η) of 31.89 %, an open-circuit voltage (<em>V</em><sub><em>oc</em></sub>) of 1.31 V, a short-circuit current (<em>J</em><sub><em>sc</em></sub>) of 28.58 mA/cm<sup>2</sup>, and a fill factor (FF) of 84.99 %.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"196 ","pages":"Article 112369"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring 32 % efficiency of eco-friendly kusachiite-based solar cells: A numerical study\",\"authors\":\"Sumit Choudhary , Rahutosh Ranjan , Manish Nath Tripathi , Neelabh Srivastava , Arvind Kumar Sharma , Masamichi Yoshimura , Li Chang , Rajanish N. Tiwari\",\"doi\":\"10.1016/j.jpcs.2024.112369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recently, solar cells have appeared as a promising solution to meet the increasing energy demand. However, their large-scale commercial use is limited by issues such as toxicity (Cd, Pb, etc), high manufacturing costs, lower stability, and low efficiency. In this perspective, kusachiite solar cells (KSCs) are environmentally friendly, long-term stable, and easy to manufacture. Thus, in this work, kusachiite (CuBi<sub>2</sub>O<sub>4</sub>) is used as an absorber layer, with NiO and SrTiO<sub>3</sub> serving as the hole transport material (HTM) and an electron transport layer (ETL), respectively. The KSCs, with a structure of FTO/SrTiO<sub>3</sub>/CuBi<sub>2</sub>O<sub>4</sub>/NiO/Au, are numerically simulated. Maximum power conversion efficiency is achieved by optimizing several photovoltaic parameters, such as the thickness and doping density of the ETL, absorber, and HTM. The optimized thicknesses for the HTL, absorber layer, and ETL are 1.5 μm, 2.28 μm, and 0.02 μm, respectively. The designed KSCs exhibit an efficiency eta (η) of 31.89 %, an open-circuit voltage (<em>V</em><sub><em>oc</em></sub>) of 1.31 V, a short-circuit current (<em>J</em><sub><em>sc</em></sub>) of 28.58 mA/cm<sup>2</sup>, and a fill factor (FF) of 84.99 %.</div></div>\",\"PeriodicalId\":16811,\"journal\":{\"name\":\"Journal of Physics and Chemistry of Solids\",\"volume\":\"196 \",\"pages\":\"Article 112369\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics and Chemistry of Solids\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022369724005043\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369724005043","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Exploring 32 % efficiency of eco-friendly kusachiite-based solar cells: A numerical study
Recently, solar cells have appeared as a promising solution to meet the increasing energy demand. However, their large-scale commercial use is limited by issues such as toxicity (Cd, Pb, etc), high manufacturing costs, lower stability, and low efficiency. In this perspective, kusachiite solar cells (KSCs) are environmentally friendly, long-term stable, and easy to manufacture. Thus, in this work, kusachiite (CuBi2O4) is used as an absorber layer, with NiO and SrTiO3 serving as the hole transport material (HTM) and an electron transport layer (ETL), respectively. The KSCs, with a structure of FTO/SrTiO3/CuBi2O4/NiO/Au, are numerically simulated. Maximum power conversion efficiency is achieved by optimizing several photovoltaic parameters, such as the thickness and doping density of the ETL, absorber, and HTM. The optimized thicknesses for the HTL, absorber layer, and ETL are 1.5 μm, 2.28 μm, and 0.02 μm, respectively. The designed KSCs exhibit an efficiency eta (η) of 31.89 %, an open-circuit voltage (Voc) of 1.31 V, a short-circuit current (Jsc) of 28.58 mA/cm2, and a fill factor (FF) of 84.99 %.
期刊介绍:
The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems.
Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal:
Low-dimensional systems
Exotic states of quantum electron matter including topological phases
Energy conversion and storage
Interfaces, nanoparticles and catalysts.