过程控制块信息数据集:实现安卓恶意软件检测

IF 1 Q3 MULTIDISCIPLINARY SCIENCES Data in Brief Pub Date : 2024-09-26 DOI:10.1016/j.dib.2024.110975
Heba Alawneh, Hamza Alkofahi
{"title":"过程控制块信息数据集:实现安卓恶意软件检测","authors":"Heba Alawneh,&nbsp;Hamza Alkofahi","doi":"10.1016/j.dib.2024.110975","DOIUrl":null,"url":null,"abstract":"<div><div>This article proposes a Process Control Block (PCB) dataset <span><span>[1]</span></span> mined over the process execution time of tested Android applications. The PCB data from 2620 malware-infested applications and 1610 benign applications were collected. The PCB data sequence was collected for 25 seconds, with an average of 18,500 PCB records stored for each application.The mining method was implemented at the kernel level and synced with the process (job) context switching. The data for each program comprises the PCB information for all threads running the application. The application automation testing and PCB gathering for benign and malicious applications were conducted in a closed dynamic malware analysis framework. The dataset can be used to compare and contrast the low-level (kernel) behavior of benign and malicious Android programs. For the vast majority of tested applications, the mining approach effectively captured 99% of the context switches.</div></div>","PeriodicalId":10973,"journal":{"name":"Data in Brief","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Process control block information dataset: Towards android malware detection\",\"authors\":\"Heba Alawneh,&nbsp;Hamza Alkofahi\",\"doi\":\"10.1016/j.dib.2024.110975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article proposes a Process Control Block (PCB) dataset <span><span>[1]</span></span> mined over the process execution time of tested Android applications. The PCB data from 2620 malware-infested applications and 1610 benign applications were collected. The PCB data sequence was collected for 25 seconds, with an average of 18,500 PCB records stored for each application.The mining method was implemented at the kernel level and synced with the process (job) context switching. The data for each program comprises the PCB information for all threads running the application. The application automation testing and PCB gathering for benign and malicious applications were conducted in a closed dynamic malware analysis framework. The dataset can be used to compare and contrast the low-level (kernel) behavior of benign and malicious Android programs. For the vast majority of tested applications, the mining approach effectively captured 99% of the context switches.</div></div>\",\"PeriodicalId\":10973,\"journal\":{\"name\":\"Data in Brief\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data in Brief\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352340924009375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data in Brief","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352340924009375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一个进程控制块(PCB)数据集[1],该数据集是在经过测试的安卓应用程序的进程执行时间内挖掘出来的。本文收集了 2620 个受恶意软件攻击的应用程序和 1610 个良性应用程序的 PCB 数据。PCB数据序列的收集时间为25秒,每个应用程序平均存储18500条PCB记录。挖掘方法在内核级实现,并与进程(任务)上下文切换同步。每个程序的数据包括运行该程序的所有线程的 PCB 信息。在封闭的动态恶意软件分析框架中,对良性和恶意应用程序进行了应用程序自动化测试和 PCB 收集。该数据集可用于比较和对比良性和恶意 Android 程序的底层(内核)行为。对于绝大多数测试应用程序,挖掘方法有效捕获了 99% 的上下文切换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Process control block information dataset: Towards android malware detection
This article proposes a Process Control Block (PCB) dataset [1] mined over the process execution time of tested Android applications. The PCB data from 2620 malware-infested applications and 1610 benign applications were collected. The PCB data sequence was collected for 25 seconds, with an average of 18,500 PCB records stored for each application.The mining method was implemented at the kernel level and synced with the process (job) context switching. The data for each program comprises the PCB information for all threads running the application. The application automation testing and PCB gathering for benign and malicious applications were conducted in a closed dynamic malware analysis framework. The dataset can be used to compare and contrast the low-level (kernel) behavior of benign and malicious Android programs. For the vast majority of tested applications, the mining approach effectively captured 99% of the context switches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Data in Brief
Data in Brief MULTIDISCIPLINARY SCIENCES-
CiteScore
3.10
自引率
0.00%
发文量
996
审稿时长
70 days
期刊介绍: Data in Brief provides a way for researchers to easily share and reuse each other''s datasets by publishing data articles that: -Thoroughly describe your data, facilitating reproducibility. -Make your data, which is often buried in supplementary material, easier to find. -Increase traffic towards associated research articles and data, leading to more citations. -Open up doors for new collaborations. Because you never know what data will be useful to someone else, Data in Brief welcomes submissions that describe data from all research areas.
期刊最新文献
Dataset of dendrometer and environmental parameter measurements of two different species of the group of genera known as eucalypts in South Africa and Portugal Bulk mRNA-sequencing data of the estrogen and androgen responses in the human prostate cancer cell line VCaP A refined spirometry dataset for comparing segmented (piecewise) linear models to that of GAMLSS Shotgun metagenomics sequencing data of root microbial community of Huanglongbing-infected Citrus nobilis BEEHIVE: A dataset of Apis mellifera images to empower honeybee monitoring research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1