利用混合聚类算法整合改进的稳定图的混凝土拱坝自动运行模态分析

IF 7.9 1区 工程技术 Q1 ENGINEERING, MECHANICAL Mechanical Systems and Signal Processing Pub Date : 2024-10-11 DOI:10.1016/j.ymssp.2024.112011
Yingrui Wu , Fei Kang , Gang Wan , Hongjun Li
{"title":"利用混合聚类算法整合改进的稳定图的混凝土拱坝自动运行模态分析","authors":"Yingrui Wu ,&nbsp;Fei Kang ,&nbsp;Gang Wan ,&nbsp;Hongjun Li","doi":"10.1016/j.ymssp.2024.112011","DOIUrl":null,"url":null,"abstract":"<div><div>Modal identification based on ambient vibration has gained increasing importance in monitoring the operational behavior of dams. This paper develops a robust automated modal identification method to identify the modal parameters of concrete dams. The proposed method requires no modal validation criteria beyond some widely used thresholds. Initially, the covariance-driven stochastic subspace identification (SSI-COV) algorithm is utilized to extract modal parameters, then introducing an improved stabilization diagram to eliminate spurious modes. Subsequently, a hybrid clustering algorithm that combines the clustering by fast search and find of density peaks (DPC) algorithm with a shared nearest neighbor approach is proposed to group physical modes. Clustering centers are determined automatically through a statistics-based method. Finally, the boxplot method is employed to detect and remove outliers from each cluster, thereby facilitating more accurate modal parameter estimation. The performance of the proposed method is validated by identifying the modal parameters of a five-degree-of-freedom frame model and a small-scale arch dam. The results demonstrate that the proposed method is capable of automatically identifying modal parameters with considerable accuracy and robustness.</div></div>","PeriodicalId":51124,"journal":{"name":"Mechanical Systems and Signal Processing","volume":"224 ","pages":"Article 112011"},"PeriodicalIF":7.9000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic operational modal analysis for concrete arch dams integrating improved stabilization diagram with hybrid clustering algorithm\",\"authors\":\"Yingrui Wu ,&nbsp;Fei Kang ,&nbsp;Gang Wan ,&nbsp;Hongjun Li\",\"doi\":\"10.1016/j.ymssp.2024.112011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Modal identification based on ambient vibration has gained increasing importance in monitoring the operational behavior of dams. This paper develops a robust automated modal identification method to identify the modal parameters of concrete dams. The proposed method requires no modal validation criteria beyond some widely used thresholds. Initially, the covariance-driven stochastic subspace identification (SSI-COV) algorithm is utilized to extract modal parameters, then introducing an improved stabilization diagram to eliminate spurious modes. Subsequently, a hybrid clustering algorithm that combines the clustering by fast search and find of density peaks (DPC) algorithm with a shared nearest neighbor approach is proposed to group physical modes. Clustering centers are determined automatically through a statistics-based method. Finally, the boxplot method is employed to detect and remove outliers from each cluster, thereby facilitating more accurate modal parameter estimation. The performance of the proposed method is validated by identifying the modal parameters of a five-degree-of-freedom frame model and a small-scale arch dam. The results demonstrate that the proposed method is capable of automatically identifying modal parameters with considerable accuracy and robustness.</div></div>\",\"PeriodicalId\":51124,\"journal\":{\"name\":\"Mechanical Systems and Signal Processing\",\"volume\":\"224 \",\"pages\":\"Article 112011\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanical Systems and Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0888327024009099\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanical Systems and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888327024009099","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

基于环境振动的模态识别在监测大坝运行行为方面的重要性与日俱增。本文开发了一种稳健的自动模态识别方法,用于识别混凝土大坝的模态参数。除了一些广泛使用的阈值外,所提出的方法不需要模态验证标准。首先,利用协方差驱动随机子空间识别(SSI-COV)算法提取模态参数,然后引入改进的稳定图来消除虚假模态。随后,提出了一种混合聚类算法,将快速搜索聚类和密度峰查找算法(DPC)与共享近邻方法相结合,对物理模态进行分组。聚类中心通过基于统计的方法自动确定。最后,采用方框图法检测并剔除每个聚类中的异常值,从而促进更精确的模态参数估计。通过识别五自由度框架模型和小型拱坝的模态参数,验证了所提方法的性能。结果表明,所提出的方法能够自动识别模态参数,并具有相当高的准确性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic operational modal analysis for concrete arch dams integrating improved stabilization diagram with hybrid clustering algorithm
Modal identification based on ambient vibration has gained increasing importance in monitoring the operational behavior of dams. This paper develops a robust automated modal identification method to identify the modal parameters of concrete dams. The proposed method requires no modal validation criteria beyond some widely used thresholds. Initially, the covariance-driven stochastic subspace identification (SSI-COV) algorithm is utilized to extract modal parameters, then introducing an improved stabilization diagram to eliminate spurious modes. Subsequently, a hybrid clustering algorithm that combines the clustering by fast search and find of density peaks (DPC) algorithm with a shared nearest neighbor approach is proposed to group physical modes. Clustering centers are determined automatically through a statistics-based method. Finally, the boxplot method is employed to detect and remove outliers from each cluster, thereby facilitating more accurate modal parameter estimation. The performance of the proposed method is validated by identifying the modal parameters of a five-degree-of-freedom frame model and a small-scale arch dam. The results demonstrate that the proposed method is capable of automatically identifying modal parameters with considerable accuracy and robustness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mechanical Systems and Signal Processing
Mechanical Systems and Signal Processing 工程技术-工程:机械
CiteScore
14.80
自引率
13.10%
发文量
1183
审稿时长
5.4 months
期刊介绍: Journal Name: Mechanical Systems and Signal Processing (MSSP) Interdisciplinary Focus: Mechanical, Aerospace, and Civil Engineering Purpose:Reporting scientific advancements of the highest quality Arising from new techniques in sensing, instrumentation, signal processing, modelling, and control of dynamic systems
期刊最新文献
A two-stage correction method for UAV movement-induced errors in non-target computer vision-based displacement measurement Outlier-resistant guided wave dispersion curve recovery and measurement placement optimization base on multitask complex hierarchical sparse Bayesian learning Multifaceted vibration absorption of a rotating magnetic nonlinear energy sink A novel microwave-based dynamic measurement method for blade tip clearance through nonlinear I/Q imbalance correction Shrinkage mamba relation network with out-of-distribution data augmentation for rotating machinery fault detection and localization under zero-faulty data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1