为倾斜空间数据建模的多元倾斜正态分布

IF 2.1 Q3 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Spatial and Spatio-Temporal Epidemiology Pub Date : 2024-09-27 DOI:10.1016/j.sste.2024.100692
Kassahun Abere Ayalew , Samuel Manda , Bo Cai
{"title":"为倾斜空间数据建模的多元倾斜正态分布","authors":"Kassahun Abere Ayalew ,&nbsp;Samuel Manda ,&nbsp;Bo Cai","doi":"10.1016/j.sste.2024.100692","DOIUrl":null,"url":null,"abstract":"<div><div>Multivariate spatial data are commonly modelled using the shared spatial component and multivariate intrinsic conditional autoregressive (MICAR) models where the spatial random variables are assumed to be normally distributed. However, the normality assumption may not be always right as the spatially structured component may show non-normal distributions. We present, multivariate skew-normal spatial distribution in the modelling of multivariate conditional autoregressive models. Simulations and an application to estimate district HIV rates in South Africa are used for illustrating the capabilities of the proposed multivariate skewed spatial model. The estimation is done in a Bayesian framework. A comparison between our suggested approach and the common MICAR model is made using conditional predictive ordinate (CPO). The CPO values indicate that our suggested approach is better than the MICAR model for predicting the outcome variables of both the simulated and HIV data.</div></div>","PeriodicalId":46645,"journal":{"name":"Spatial and Spatio-Temporal Epidemiology","volume":"51 ","pages":"Article 100692"},"PeriodicalIF":2.1000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multivariate skew-normal distribution for modelling skewed spatial data\",\"authors\":\"Kassahun Abere Ayalew ,&nbsp;Samuel Manda ,&nbsp;Bo Cai\",\"doi\":\"10.1016/j.sste.2024.100692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Multivariate spatial data are commonly modelled using the shared spatial component and multivariate intrinsic conditional autoregressive (MICAR) models where the spatial random variables are assumed to be normally distributed. However, the normality assumption may not be always right as the spatially structured component may show non-normal distributions. We present, multivariate skew-normal spatial distribution in the modelling of multivariate conditional autoregressive models. Simulations and an application to estimate district HIV rates in South Africa are used for illustrating the capabilities of the proposed multivariate skewed spatial model. The estimation is done in a Bayesian framework. A comparison between our suggested approach and the common MICAR model is made using conditional predictive ordinate (CPO). The CPO values indicate that our suggested approach is better than the MICAR model for predicting the outcome variables of both the simulated and HIV data.</div></div>\",\"PeriodicalId\":46645,\"journal\":{\"name\":\"Spatial and Spatio-Temporal Epidemiology\",\"volume\":\"51 \",\"pages\":\"Article 100692\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spatial and Spatio-Temporal Epidemiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1877584524000595\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial and Spatio-Temporal Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877584524000595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

摘要

多变量空间数据通常使用共享空间分量和多变量内在条件自回归(MICAR)模型来建模,其中空间随机变量被假定为正态分布。然而,正态性假设并不总是正确的,因为空间结构成分可能呈现非正态分布。我们介绍了多元条件自回归模型建模中的多元倾斜正态空间分布。我们利用模拟和应用来估算南非的地区艾滋病毒感染率,以说明所提出的多元倾斜空间模型的能力。估计是在贝叶斯框架下进行的。使用条件预测序数(CPO)对我们建议的方法和常见的 MICAR 模型进行了比较。CPO 值表明,在预测模拟数据和艾滋病毒数据的结果变量方面,我们建议的方法优于 MICAR 模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multivariate skew-normal distribution for modelling skewed spatial data
Multivariate spatial data are commonly modelled using the shared spatial component and multivariate intrinsic conditional autoregressive (MICAR) models where the spatial random variables are assumed to be normally distributed. However, the normality assumption may not be always right as the spatially structured component may show non-normal distributions. We present, multivariate skew-normal spatial distribution in the modelling of multivariate conditional autoregressive models. Simulations and an application to estimate district HIV rates in South Africa are used for illustrating the capabilities of the proposed multivariate skewed spatial model. The estimation is done in a Bayesian framework. A comparison between our suggested approach and the common MICAR model is made using conditional predictive ordinate (CPO). The CPO values indicate that our suggested approach is better than the MICAR model for predicting the outcome variables of both the simulated and HIV data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Spatial and Spatio-Temporal Epidemiology
Spatial and Spatio-Temporal Epidemiology PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH-
CiteScore
5.10
自引率
8.80%
发文量
63
期刊最新文献
Association between urban green space and transmission of COVID-19 in Oslo, Norway: A Bayesian SIR modeling approach Employment industry and opioid overdose risk: A pre- and post-COVID-19 comparison in Kentucky and Massachusetts 2018–2021 Editorial Board Spatial pattern of all cause excess mortality in Swiss districts during the pandemic years 1890, 1918 and 2020 Multiple “spaces”: Using wildlife surveillance, climatic variables, and spatial statistics to identify and map a climatic niche for endemic plague in California, U.S.A.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1