{"title":"基于人工智能的风险器官自动分类对中低收入国家的影响","authors":"Solomon Kibudde MBChB, MMed , Awusi Kavuma PhD , Yao Hao PhD , Tianyu Zhao PhD , Hiram Gay MD , Jacaranda Van Rheenen PhD , Pavan Mukesh Jhaveri MD , Minjmaa Minjgee MD, PhD , Enkhsetseg Vanchinbazar MSc , Urdenekhuu Nansalmaa MD, PhD, MPH , Baozhou Sun PhD, MBA, DABR","doi":"10.1016/j.adro.2024.101638","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>Radiation therapy (RT) processes require significant human resources and expertise, creating a barrier to rapid RT deployment in low- and middle-income countries (LMICs). Accurate segmentation of tumor targets and organs at risk (OARs) is crucial for optimal RT. This study assessed the impact of artificial intelligence (AI)-based autosegmentation of OARs in 2 LMICs.</div></div><div><h3>Methods and Materials</h3><div>Ten patients, comprising 5 head and neck (HN) cancer patients and 5 prostate cancer patients, were randomly selected. Planning computed tomography images were subjected to autosegmentation using an Food and Drug Administration-approved AI software tool and manual segmentation by experienced radiation oncologists from 2 LMIC RT clinics. The control data, obtained from a large academic institution in the United States, consisted of contours obtained by an experienced radiation oncologist. The segmentation time, DICE similarity coefficient (DSC), Hausdorff distance, and mean surface distance were evaluated.</div></div><div><h3>Results</h3><div>AI significantly reduced segmentation time, averaging 2 minutes per patient, compared with 57 to 84 minutes for manual contouring in LMICs. Compared with the control data, the AI pelvic contours provided better agreement than did the LMIC manual contours (mean DSC of 0.834 vs 0.807 in LMIC1 and 0.844 vs 0.801 in LMIC2). For HN contours, AI provided better agreement for the majority of OAR contours than manual contours in LMIC1 (mean DSC: 0.823 vs 0.821) or LMIC2 (mean DSC: 0.792 vs 0.748). Neither the AI nor LMIC manual contours had good agreement with the control data (DSC < 0.600) for the optic nerves, chiasm, and cochlea.</div></div><div><h3>Conclusions</h3><div>AI-based autosegmentation generates OAR contours of comparable quality to manual segmentation for both pelvic and HN cancer patients in LMICs, with substantial time savings.</div></div>","PeriodicalId":7390,"journal":{"name":"Advances in Radiation Oncology","volume":"9 11","pages":"Article 101638"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Artificial Intelligence-Based Autosegmentation of Organs at Risk in Low- and Middle-Income Countries\",\"authors\":\"Solomon Kibudde MBChB, MMed , Awusi Kavuma PhD , Yao Hao PhD , Tianyu Zhao PhD , Hiram Gay MD , Jacaranda Van Rheenen PhD , Pavan Mukesh Jhaveri MD , Minjmaa Minjgee MD, PhD , Enkhsetseg Vanchinbazar MSc , Urdenekhuu Nansalmaa MD, PhD, MPH , Baozhou Sun PhD, MBA, DABR\",\"doi\":\"10.1016/j.adro.2024.101638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose</h3><div>Radiation therapy (RT) processes require significant human resources and expertise, creating a barrier to rapid RT deployment in low- and middle-income countries (LMICs). Accurate segmentation of tumor targets and organs at risk (OARs) is crucial for optimal RT. This study assessed the impact of artificial intelligence (AI)-based autosegmentation of OARs in 2 LMICs.</div></div><div><h3>Methods and Materials</h3><div>Ten patients, comprising 5 head and neck (HN) cancer patients and 5 prostate cancer patients, were randomly selected. Planning computed tomography images were subjected to autosegmentation using an Food and Drug Administration-approved AI software tool and manual segmentation by experienced radiation oncologists from 2 LMIC RT clinics. The control data, obtained from a large academic institution in the United States, consisted of contours obtained by an experienced radiation oncologist. The segmentation time, DICE similarity coefficient (DSC), Hausdorff distance, and mean surface distance were evaluated.</div></div><div><h3>Results</h3><div>AI significantly reduced segmentation time, averaging 2 minutes per patient, compared with 57 to 84 minutes for manual contouring in LMICs. Compared with the control data, the AI pelvic contours provided better agreement than did the LMIC manual contours (mean DSC of 0.834 vs 0.807 in LMIC1 and 0.844 vs 0.801 in LMIC2). For HN contours, AI provided better agreement for the majority of OAR contours than manual contours in LMIC1 (mean DSC: 0.823 vs 0.821) or LMIC2 (mean DSC: 0.792 vs 0.748). Neither the AI nor LMIC manual contours had good agreement with the control data (DSC < 0.600) for the optic nerves, chiasm, and cochlea.</div></div><div><h3>Conclusions</h3><div>AI-based autosegmentation generates OAR contours of comparable quality to manual segmentation for both pelvic and HN cancer patients in LMICs, with substantial time savings.</div></div>\",\"PeriodicalId\":7390,\"journal\":{\"name\":\"Advances in Radiation Oncology\",\"volume\":\"9 11\",\"pages\":\"Article 101638\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Radiation Oncology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S245210942400201X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S245210942400201X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
Impact of Artificial Intelligence-Based Autosegmentation of Organs at Risk in Low- and Middle-Income Countries
Purpose
Radiation therapy (RT) processes require significant human resources and expertise, creating a barrier to rapid RT deployment in low- and middle-income countries (LMICs). Accurate segmentation of tumor targets and organs at risk (OARs) is crucial for optimal RT. This study assessed the impact of artificial intelligence (AI)-based autosegmentation of OARs in 2 LMICs.
Methods and Materials
Ten patients, comprising 5 head and neck (HN) cancer patients and 5 prostate cancer patients, were randomly selected. Planning computed tomography images were subjected to autosegmentation using an Food and Drug Administration-approved AI software tool and manual segmentation by experienced radiation oncologists from 2 LMIC RT clinics. The control data, obtained from a large academic institution in the United States, consisted of contours obtained by an experienced radiation oncologist. The segmentation time, DICE similarity coefficient (DSC), Hausdorff distance, and mean surface distance were evaluated.
Results
AI significantly reduced segmentation time, averaging 2 minutes per patient, compared with 57 to 84 minutes for manual contouring in LMICs. Compared with the control data, the AI pelvic contours provided better agreement than did the LMIC manual contours (mean DSC of 0.834 vs 0.807 in LMIC1 and 0.844 vs 0.801 in LMIC2). For HN contours, AI provided better agreement for the majority of OAR contours than manual contours in LMIC1 (mean DSC: 0.823 vs 0.821) or LMIC2 (mean DSC: 0.792 vs 0.748). Neither the AI nor LMIC manual contours had good agreement with the control data (DSC < 0.600) for the optic nerves, chiasm, and cochlea.
Conclusions
AI-based autosegmentation generates OAR contours of comparable quality to manual segmentation for both pelvic and HN cancer patients in LMICs, with substantial time savings.
期刊介绍:
The purpose of Advances is to provide information for clinicians who use radiation therapy by publishing: Clinical trial reports and reanalyses. Basic science original reports. Manuscripts examining health services research, comparative and cost effectiveness research, and systematic reviews. Case reports documenting unusual problems and solutions. High quality multi and single institutional series, as well as other novel retrospective hypothesis generating series. Timely critical reviews on important topics in radiation oncology, such as side effects. Articles reporting the natural history of disease and patterns of failure, particularly as they relate to treatment volume delineation. Articles on safety and quality in radiation therapy. Essays on clinical experience. Articles on practice transformation in radiation oncology, in particular: Aspects of health policy that may impact the future practice of radiation oncology. How information technology, such as data analytics and systems innovations, will change radiation oncology practice. Articles on imaging as they relate to radiation therapy treatment.