基于活动中心性的复杂系统关键节点识别,防止级联失效

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Physica A: Statistical Mechanics and its Applications Pub Date : 2024-10-05 DOI:10.1016/j.physa.2024.130121
Changchun Lv , Ye Zhang , Yulin Lei , Dongli Duan , Shubin Si
{"title":"基于活动中心性的复杂系统关键节点识别,防止级联失效","authors":"Changchun Lv ,&nbsp;Ye Zhang ,&nbsp;Yulin Lei ,&nbsp;Dongli Duan ,&nbsp;Shubin Si","doi":"10.1016/j.physa.2024.130121","DOIUrl":null,"url":null,"abstract":"<div><div>Identifying critical nodes in the network has been a concern permanently. Cascading failure would cause catastrophic events, and in the field of cascading failure in complex networks, the structure and dynamics are considered as the key in the process of cascading failure. It is vital to have an applicable centrality to find critical nodes that could control and prevent the cascading failure. In this paper, we propose a steady-state activity centrality to evaluate the importance of each node, and the proposed centrality is related to the degree of each node and the activity of its neighbor nodes. The giant component, the average activity, and the tipping point under different attack strategies are introduced to compare the attack effect of these three centralities including steady-state activity centrality, betweenness centrality and closeness centrality. The results show that the attack effect under the proposed centrality is better than the effect under the other two centralities. In particular, for the network with the SIS and gene regulation dynamic, the attack effect under the steady-state activity centrality driven strategy is obviously better than the effect under the betweenness centrality driven strategy when the network is heterogeneous.</div></div>","PeriodicalId":20152,"journal":{"name":"Physica A: Statistical Mechanics and its Applications","volume":"654 ","pages":"Article 130121"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Activity centrality-based critical node identification in complex systems against cascade failure\",\"authors\":\"Changchun Lv ,&nbsp;Ye Zhang ,&nbsp;Yulin Lei ,&nbsp;Dongli Duan ,&nbsp;Shubin Si\",\"doi\":\"10.1016/j.physa.2024.130121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Identifying critical nodes in the network has been a concern permanently. Cascading failure would cause catastrophic events, and in the field of cascading failure in complex networks, the structure and dynamics are considered as the key in the process of cascading failure. It is vital to have an applicable centrality to find critical nodes that could control and prevent the cascading failure. In this paper, we propose a steady-state activity centrality to evaluate the importance of each node, and the proposed centrality is related to the degree of each node and the activity of its neighbor nodes. The giant component, the average activity, and the tipping point under different attack strategies are introduced to compare the attack effect of these three centralities including steady-state activity centrality, betweenness centrality and closeness centrality. The results show that the attack effect under the proposed centrality is better than the effect under the other two centralities. In particular, for the network with the SIS and gene regulation dynamic, the attack effect under the steady-state activity centrality driven strategy is obviously better than the effect under the betweenness centrality driven strategy when the network is heterogeneous.</div></div>\",\"PeriodicalId\":20152,\"journal\":{\"name\":\"Physica A: Statistical Mechanics and its Applications\",\"volume\":\"654 \",\"pages\":\"Article 130121\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica A: Statistical Mechanics and its Applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378437124006307\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica A: Statistical Mechanics and its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378437124006307","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

识别网络中的关键节点一直是人们关注的问题。级联失效会导致灾难性事件,而在复杂网络的级联失效领域,结构和动力学被认为是级联失效过程中的关键。要找到能控制和防止级联失效的关键节点,关键是要有一个适用的中心度。本文提出了一种稳态活动中心度来评估每个节点的重要性,所提出的中心度与每个节点的度和其相邻节点的活动相关。通过引入不同攻击策略下的巨分量、平均活跃度和临界点,比较了稳态活动中心度、间度中心度和接近度中心度等三种中心度的攻击效果。结果表明,建议中心度下的攻击效果优于其他两种中心度下的效果。特别是对于具有 SIS 和基因调控动态的网络,在网络异质性的情况下,稳态活动中心性驱动策略下的攻击效果明显优于间度中心性驱动策略下的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Activity centrality-based critical node identification in complex systems against cascade failure
Identifying critical nodes in the network has been a concern permanently. Cascading failure would cause catastrophic events, and in the field of cascading failure in complex networks, the structure and dynamics are considered as the key in the process of cascading failure. It is vital to have an applicable centrality to find critical nodes that could control and prevent the cascading failure. In this paper, we propose a steady-state activity centrality to evaluate the importance of each node, and the proposed centrality is related to the degree of each node and the activity of its neighbor nodes. The giant component, the average activity, and the tipping point under different attack strategies are introduced to compare the attack effect of these three centralities including steady-state activity centrality, betweenness centrality and closeness centrality. The results show that the attack effect under the proposed centrality is better than the effect under the other two centralities. In particular, for the network with the SIS and gene regulation dynamic, the attack effect under the steady-state activity centrality driven strategy is obviously better than the effect under the betweenness centrality driven strategy when the network is heterogeneous.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
9.10%
发文量
852
审稿时长
6.6 months
期刊介绍: Physica A: Statistical Mechanics and its Applications Recognized by the European Physical Society Physica A publishes research in the field of statistical mechanics and its applications. Statistical mechanics sets out to explain the behaviour of macroscopic systems by studying the statistical properties of their microscopic constituents. Applications of the techniques of statistical mechanics are widespread, and include: applications to physical systems such as solids, liquids and gases; applications to chemical and biological systems (colloids, interfaces, complex fluids, polymers and biopolymers, cell physics); and other interdisciplinary applications to for instance biological, economical and sociological systems.
期刊最新文献
Shape parameter of Weibull size statistics is a potential indicator of filler geometry in SiO2 reinforced polymer composites An investigation of firm size distributions involving the growth functions Correlations between two vortices in dry active matter Effects of risk information on pedestrian evacuation during fire emergencies: Virtual experiments and survey An evacuation model considering pedestrian group behavior under violent attacks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1