基于量子表示的偏好演化网络用于电子商务推荐

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Physica A: Statistical Mechanics and its Applications Pub Date : 2024-10-05 DOI:10.1016/j.physa.2024.130155
Panpan Wang, Heling Cao, Peng Li, Yun Wang, Yonghe Chu, Tianli Liao, Chenyang Zhao, Guangen Liu
{"title":"基于量子表示的偏好演化网络用于电子商务推荐","authors":"Panpan Wang,&nbsp;Heling Cao,&nbsp;Peng Li,&nbsp;Yun Wang,&nbsp;Yonghe Chu,&nbsp;Tianli Liao,&nbsp;Chenyang Zhao,&nbsp;Guangen Liu","doi":"10.1016/j.physa.2024.130155","DOIUrl":null,"url":null,"abstract":"<div><div>Quantum theory, originally developed to explain microscopic physical systems, has recently emerged as a novel conceptual and mathematical framework in information science. This paper applies quantum theory to address challenges in E-commerce recommendation, specifically those involving sequential behavior, aiming to mine effective patterns of preference evolution and more accurately predict user interests. Current recommender systems are limited by the sequence length and underutilize side information such as item attributes. To address these issues, we propose a Quantum Representation-based Preference Evolution Network (QRPEN) for E-commerce recommendations. Unlike traditional methods that focus solely on <em>item-ID</em>, our approach integrates a comprehensive set of side information, including both <em>item-ID</em> and <em>attribute</em> data, at each timestamp. We represent item attributes using quantum superposition states and employ density matrices to describe the probability distribution of same-type attributes. These matrices are then transformed into vectors through a quantum measurement-inspired process and fed into a Quasi-RNN model, enabling parallelization and the modeling of longer sequences. This approach effectively captures the dynamic evolution of user preferences. Experiments on public E-commerce datasets demonstrate that QRPEN achieves competitive performance.</div></div>","PeriodicalId":20152,"journal":{"name":"Physica A: Statistical Mechanics and its Applications","volume":"654 ","pages":"Article 130155"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum Representation based Preference Evolution Network for E-commerce recommendation\",\"authors\":\"Panpan Wang,&nbsp;Heling Cao,&nbsp;Peng Li,&nbsp;Yun Wang,&nbsp;Yonghe Chu,&nbsp;Tianli Liao,&nbsp;Chenyang Zhao,&nbsp;Guangen Liu\",\"doi\":\"10.1016/j.physa.2024.130155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Quantum theory, originally developed to explain microscopic physical systems, has recently emerged as a novel conceptual and mathematical framework in information science. This paper applies quantum theory to address challenges in E-commerce recommendation, specifically those involving sequential behavior, aiming to mine effective patterns of preference evolution and more accurately predict user interests. Current recommender systems are limited by the sequence length and underutilize side information such as item attributes. To address these issues, we propose a Quantum Representation-based Preference Evolution Network (QRPEN) for E-commerce recommendations. Unlike traditional methods that focus solely on <em>item-ID</em>, our approach integrates a comprehensive set of side information, including both <em>item-ID</em> and <em>attribute</em> data, at each timestamp. We represent item attributes using quantum superposition states and employ density matrices to describe the probability distribution of same-type attributes. These matrices are then transformed into vectors through a quantum measurement-inspired process and fed into a Quasi-RNN model, enabling parallelization and the modeling of longer sequences. This approach effectively captures the dynamic evolution of user preferences. Experiments on public E-commerce datasets demonstrate that QRPEN achieves competitive performance.</div></div>\",\"PeriodicalId\":20152,\"journal\":{\"name\":\"Physica A: Statistical Mechanics and its Applications\",\"volume\":\"654 \",\"pages\":\"Article 130155\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica A: Statistical Mechanics and its Applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378437124006642\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica A: Statistical Mechanics and its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378437124006642","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

量子理论最初是用来解释微观物理系统的,最近已成为信息科学中一种新颖的概念和数学框架。本文应用量子理论来应对电子商务推荐中的挑战,特别是那些涉及序列行为的挑战,旨在挖掘有效的偏好演变模式,更准确地预测用户兴趣。当前的推荐系统受到序列长度的限制,并且没有充分利用商品属性等附带信息。为了解决这些问题,我们提出了一种用于电子商务推荐的基于量子表征的偏好演化网络(QRPEN)。与只关注商品 ID 的传统方法不同,我们的方法在每个时间戳整合了一整套侧信息,包括商品 ID 和属性数据。我们使用量子叠加态来表示物品属性,并采用密度矩阵来描述同类属性的概率分布。然后,通过量子测量启发过程将这些矩阵转换为向量,并输入准 RNN 模型,从而实现并行化和更长序列的建模。这种方法能有效捕捉用户偏好的动态演变。在公共电子商务数据集上的实验证明,QRPEN 实现了具有竞争力的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantum Representation based Preference Evolution Network for E-commerce recommendation
Quantum theory, originally developed to explain microscopic physical systems, has recently emerged as a novel conceptual and mathematical framework in information science. This paper applies quantum theory to address challenges in E-commerce recommendation, specifically those involving sequential behavior, aiming to mine effective patterns of preference evolution and more accurately predict user interests. Current recommender systems are limited by the sequence length and underutilize side information such as item attributes. To address these issues, we propose a Quantum Representation-based Preference Evolution Network (QRPEN) for E-commerce recommendations. Unlike traditional methods that focus solely on item-ID, our approach integrates a comprehensive set of side information, including both item-ID and attribute data, at each timestamp. We represent item attributes using quantum superposition states and employ density matrices to describe the probability distribution of same-type attributes. These matrices are then transformed into vectors through a quantum measurement-inspired process and fed into a Quasi-RNN model, enabling parallelization and the modeling of longer sequences. This approach effectively captures the dynamic evolution of user preferences. Experiments on public E-commerce datasets demonstrate that QRPEN achieves competitive performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
9.10%
发文量
852
审稿时长
6.6 months
期刊介绍: Physica A: Statistical Mechanics and its Applications Recognized by the European Physical Society Physica A publishes research in the field of statistical mechanics and its applications. Statistical mechanics sets out to explain the behaviour of macroscopic systems by studying the statistical properties of their microscopic constituents. Applications of the techniques of statistical mechanics are widespread, and include: applications to physical systems such as solids, liquids and gases; applications to chemical and biological systems (colloids, interfaces, complex fluids, polymers and biopolymers, cell physics); and other interdisciplinary applications to for instance biological, economical and sociological systems.
期刊最新文献
Shape parameter of Weibull size statistics is a potential indicator of filler geometry in SiO2 reinforced polymer composites An investigation of firm size distributions involving the growth functions Correlations between two vortices in dry active matter Effects of risk information on pedestrian evacuation during fire emergencies: Virtual experiments and survey An evacuation model considering pedestrian group behavior under violent attacks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1