{"title":"随机延时动力系统的近似识别","authors":"Ping Han , Qin Guo , Hongxia Zhang , Liang Wang","doi":"10.1016/j.physa.2024.130135","DOIUrl":null,"url":null,"abstract":"<div><div>This paper addresses the challenges of analyzing stochastic dynamical systems with a single time-delay within a data-driven framework. The presence of time-delay introduces non-Markovian characteristics to the system, complicating the analysis of its dynamic behavior using traditional approaches. Drawing inspiration from the small delay approximation, we apply a sparse identification technique to approximate the non-Markovian process with a Markovian one. This innovative method circumvents limitations associated with the system's dimensionality and the complexity of delayed diffusion terms, offering a versatile tool for investigating the dynamics of stochastic time-delayed systems. Our approach begins by establishing a connection between the system's coefficients and simulated data using the Kramers-Moyal formula, which captures the essential statistical properties of the system. We then leverage sparse identification to extract a concise model of the stochastic dynamical system, effectively eliminating the time-delay from consideration. The practicality and efficacy of our method are substantiated through a series of illustrative examples that showcase its application and validate its performance. By introducing this method, we aim to provide a novel analytical framework for stochastic time-delayed systems, advancing the current capabilities for modeling and understanding such complex dynamics.</div></div>","PeriodicalId":20152,"journal":{"name":"Physica A: Statistical Mechanics and its Applications","volume":"654 ","pages":"Article 130135"},"PeriodicalIF":2.8000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximation identification for the stochastic time-delayed dynamical system\",\"authors\":\"Ping Han , Qin Guo , Hongxia Zhang , Liang Wang\",\"doi\":\"10.1016/j.physa.2024.130135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper addresses the challenges of analyzing stochastic dynamical systems with a single time-delay within a data-driven framework. The presence of time-delay introduces non-Markovian characteristics to the system, complicating the analysis of its dynamic behavior using traditional approaches. Drawing inspiration from the small delay approximation, we apply a sparse identification technique to approximate the non-Markovian process with a Markovian one. This innovative method circumvents limitations associated with the system's dimensionality and the complexity of delayed diffusion terms, offering a versatile tool for investigating the dynamics of stochastic time-delayed systems. Our approach begins by establishing a connection between the system's coefficients and simulated data using the Kramers-Moyal formula, which captures the essential statistical properties of the system. We then leverage sparse identification to extract a concise model of the stochastic dynamical system, effectively eliminating the time-delay from consideration. The practicality and efficacy of our method are substantiated through a series of illustrative examples that showcase its application and validate its performance. By introducing this method, we aim to provide a novel analytical framework for stochastic time-delayed systems, advancing the current capabilities for modeling and understanding such complex dynamics.</div></div>\",\"PeriodicalId\":20152,\"journal\":{\"name\":\"Physica A: Statistical Mechanics and its Applications\",\"volume\":\"654 \",\"pages\":\"Article 130135\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica A: Statistical Mechanics and its Applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378437124006447\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica A: Statistical Mechanics and its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378437124006447","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Approximation identification for the stochastic time-delayed dynamical system
This paper addresses the challenges of analyzing stochastic dynamical systems with a single time-delay within a data-driven framework. The presence of time-delay introduces non-Markovian characteristics to the system, complicating the analysis of its dynamic behavior using traditional approaches. Drawing inspiration from the small delay approximation, we apply a sparse identification technique to approximate the non-Markovian process with a Markovian one. This innovative method circumvents limitations associated with the system's dimensionality and the complexity of delayed diffusion terms, offering a versatile tool for investigating the dynamics of stochastic time-delayed systems. Our approach begins by establishing a connection between the system's coefficients and simulated data using the Kramers-Moyal formula, which captures the essential statistical properties of the system. We then leverage sparse identification to extract a concise model of the stochastic dynamical system, effectively eliminating the time-delay from consideration. The practicality and efficacy of our method are substantiated through a series of illustrative examples that showcase its application and validate its performance. By introducing this method, we aim to provide a novel analytical framework for stochastic time-delayed systems, advancing the current capabilities for modeling and understanding such complex dynamics.
期刊介绍:
Physica A: Statistical Mechanics and its Applications
Recognized by the European Physical Society
Physica A publishes research in the field of statistical mechanics and its applications.
Statistical mechanics sets out to explain the behaviour of macroscopic systems by studying the statistical properties of their microscopic constituents.
Applications of the techniques of statistical mechanics are widespread, and include: applications to physical systems such as solids, liquids and gases; applications to chemical and biological systems (colloids, interfaces, complex fluids, polymers and biopolymers, cell physics); and other interdisciplinary applications to for instance biological, economical and sociological systems.