Dingcheng Ji , Jing Lin , Fei Gao , Jiadong Hua , Wenhao Li
{"title":"基于深度学习的空间梯度重构方法,用于利用高稀疏性 Lamb 波场高效识别复合材料中的损伤","authors":"Dingcheng Ji , Jing Lin , Fei Gao , Jiadong Hua , Wenhao Li","doi":"10.1016/j.ymssp.2024.112018","DOIUrl":null,"url":null,"abstract":"<div><div>The structural integrity and safety of carbon fiber reinforced plastics (CFRP) are vulnerable to delamination, which is often imperceptible to the naked eye. Although the Scanning Laser Doppler Vibrometer (SLDV) has shown promise in damage quantification of CFRP, its time-consuming measurement process limits its application in engineering scenarios. To address this, we introduce a novel damage index, the spatial gradient, which captures the interaction between delamination and the wavefield. We have also developed a neural network capable of reconstructing the spatial gradient directly from high-sparsity Lamb wavefield data obtained at an extremely low spatial sampling rate, thereby significantly reducing measurement time. To enhance the network’s capability to detect wavefield anomalies, we employ the cross-attention technique, allowing for the direct injection of shallow features representing local wavefield distortions caused by damage into the decoder. Additionally, we integrate multiple reconstruction layers to guide the wavefield reconstruction process, ensuring meaningful information is captured at each stage. Our method achieves substantial improvements in reconstruction accuracy, increasing from 70 % to 92 % in single-damage scenario and from 14 % to 72 % in multi-damage scenario compared to the previous state-of-the-art techniques. By using the reconstructed spatial gradient field for damage imaging through spatial covariance analysis, our approach demonstrates its feasibility and generalizability across various damage locations. This suggests its potential as a reliable solution for fast and accurate damage characterization, reducing the measurement burden and enhancing practical applicability.</div></div>","PeriodicalId":51124,"journal":{"name":"Mechanical Systems and Signal Processing","volume":"224 ","pages":"Article 112018"},"PeriodicalIF":7.9000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A deep learning-based spatial gradient reconstruction method for efficient damage identification in composite with high-sparsity Lamb wavefield\",\"authors\":\"Dingcheng Ji , Jing Lin , Fei Gao , Jiadong Hua , Wenhao Li\",\"doi\":\"10.1016/j.ymssp.2024.112018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The structural integrity and safety of carbon fiber reinforced plastics (CFRP) are vulnerable to delamination, which is often imperceptible to the naked eye. Although the Scanning Laser Doppler Vibrometer (SLDV) has shown promise in damage quantification of CFRP, its time-consuming measurement process limits its application in engineering scenarios. To address this, we introduce a novel damage index, the spatial gradient, which captures the interaction between delamination and the wavefield. We have also developed a neural network capable of reconstructing the spatial gradient directly from high-sparsity Lamb wavefield data obtained at an extremely low spatial sampling rate, thereby significantly reducing measurement time. To enhance the network’s capability to detect wavefield anomalies, we employ the cross-attention technique, allowing for the direct injection of shallow features representing local wavefield distortions caused by damage into the decoder. Additionally, we integrate multiple reconstruction layers to guide the wavefield reconstruction process, ensuring meaningful information is captured at each stage. Our method achieves substantial improvements in reconstruction accuracy, increasing from 70 % to 92 % in single-damage scenario and from 14 % to 72 % in multi-damage scenario compared to the previous state-of-the-art techniques. By using the reconstructed spatial gradient field for damage imaging through spatial covariance analysis, our approach demonstrates its feasibility and generalizability across various damage locations. This suggests its potential as a reliable solution for fast and accurate damage characterization, reducing the measurement burden and enhancing practical applicability.</div></div>\",\"PeriodicalId\":51124,\"journal\":{\"name\":\"Mechanical Systems and Signal Processing\",\"volume\":\"224 \",\"pages\":\"Article 112018\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanical Systems and Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0888327024009166\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanical Systems and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888327024009166","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
A deep learning-based spatial gradient reconstruction method for efficient damage identification in composite with high-sparsity Lamb wavefield
The structural integrity and safety of carbon fiber reinforced plastics (CFRP) are vulnerable to delamination, which is often imperceptible to the naked eye. Although the Scanning Laser Doppler Vibrometer (SLDV) has shown promise in damage quantification of CFRP, its time-consuming measurement process limits its application in engineering scenarios. To address this, we introduce a novel damage index, the spatial gradient, which captures the interaction between delamination and the wavefield. We have also developed a neural network capable of reconstructing the spatial gradient directly from high-sparsity Lamb wavefield data obtained at an extremely low spatial sampling rate, thereby significantly reducing measurement time. To enhance the network’s capability to detect wavefield anomalies, we employ the cross-attention technique, allowing for the direct injection of shallow features representing local wavefield distortions caused by damage into the decoder. Additionally, we integrate multiple reconstruction layers to guide the wavefield reconstruction process, ensuring meaningful information is captured at each stage. Our method achieves substantial improvements in reconstruction accuracy, increasing from 70 % to 92 % in single-damage scenario and from 14 % to 72 % in multi-damage scenario compared to the previous state-of-the-art techniques. By using the reconstructed spatial gradient field for damage imaging through spatial covariance analysis, our approach demonstrates its feasibility and generalizability across various damage locations. This suggests its potential as a reliable solution for fast and accurate damage characterization, reducing the measurement burden and enhancing practical applicability.
期刊介绍:
Journal Name: Mechanical Systems and Signal Processing (MSSP)
Interdisciplinary Focus:
Mechanical, Aerospace, and Civil Engineering
Purpose:Reporting scientific advancements of the highest quality
Arising from new techniques in sensing, instrumentation, signal processing, modelling, and control of dynamic systems