Hadi Taghavian , Muhammad Zaman Khan , Jakub Wiener , Jiri Militky , Blanka Tomkova , Mohanapriya Venkataraman , Zahid Ali Zafar , Miroslav Cernik , Lukas Dvorak
{"title":"用于先进水溶剂分离的 PET 织物的绿色超疏水表面工程","authors":"Hadi Taghavian , Muhammad Zaman Khan , Jakub Wiener , Jiri Militky , Blanka Tomkova , Mohanapriya Venkataraman , Zahid Ali Zafar , Miroslav Cernik , Lukas Dvorak","doi":"10.1016/j.porgcoat.2024.108842","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents the preparation of the PET membrane for effective organic solvent separation achieved through an advanced superhydrophobic surface engineering of PET fabric utilizing biomimicry and a green chemistry approach. The superhydrophobicity of the PET surface was reached through a hierarchical nanocomposite coating that involved the integration of biomimetic polydopamine (PDA) coating, green-synthesized zinc oxide (ZnO) nanoparticles (NPs), and non-fluorinated quaternary ammonium cation silane (Si-QAC) coverage. The morphology and surface chemical composition of the resultant Si-QAC/ZnO/PDA@PET membrane were characterized by SEM, EDS, FT-IR, XRD, and AFM analysis. The surface topography and water contact angle were also correlated with surface roughness and its superhydrophobicity. The resulting Si-QAC/ZnO/PDA@PET membrane exhibited promising superhydrophobic properties, characterized by a water contact angle ranging from 150° to 160° and a roll-off angle between 5° and 2° as well as stability against severe conditions, including acidic and alkaline exposure, mechanical abrasion, and UV radiations. Moreover, the Si-QAC/ZnO/PDA@PET membrane exhibited bacterial repulsive properties against <em>E. coli</em> and <em>Staphylococcus</em> sp. The separation efficiency of various aliphatic and aromatic organic solvents (n-hexane, toluene, chloroform, and petroleum ether) from water higher than 90 % was also observed, making the membrane a potential candidate for different industrial applications, particularly for the separation of organic solvents from water.</div></div>","PeriodicalId":20834,"journal":{"name":"Progress in Organic Coatings","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Green superhydrophobic surface engineering of PET fabric for advanced water-solvent separation\",\"authors\":\"Hadi Taghavian , Muhammad Zaman Khan , Jakub Wiener , Jiri Militky , Blanka Tomkova , Mohanapriya Venkataraman , Zahid Ali Zafar , Miroslav Cernik , Lukas Dvorak\",\"doi\":\"10.1016/j.porgcoat.2024.108842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents the preparation of the PET membrane for effective organic solvent separation achieved through an advanced superhydrophobic surface engineering of PET fabric utilizing biomimicry and a green chemistry approach. The superhydrophobicity of the PET surface was reached through a hierarchical nanocomposite coating that involved the integration of biomimetic polydopamine (PDA) coating, green-synthesized zinc oxide (ZnO) nanoparticles (NPs), and non-fluorinated quaternary ammonium cation silane (Si-QAC) coverage. The morphology and surface chemical composition of the resultant Si-QAC/ZnO/PDA@PET membrane were characterized by SEM, EDS, FT-IR, XRD, and AFM analysis. The surface topography and water contact angle were also correlated with surface roughness and its superhydrophobicity. The resulting Si-QAC/ZnO/PDA@PET membrane exhibited promising superhydrophobic properties, characterized by a water contact angle ranging from 150° to 160° and a roll-off angle between 5° and 2° as well as stability against severe conditions, including acidic and alkaline exposure, mechanical abrasion, and UV radiations. Moreover, the Si-QAC/ZnO/PDA@PET membrane exhibited bacterial repulsive properties against <em>E. coli</em> and <em>Staphylococcus</em> sp. The separation efficiency of various aliphatic and aromatic organic solvents (n-hexane, toluene, chloroform, and petroleum ether) from water higher than 90 % was also observed, making the membrane a potential candidate for different industrial applications, particularly for the separation of organic solvents from water.</div></div>\",\"PeriodicalId\":20834,\"journal\":{\"name\":\"Progress in Organic Coatings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Organic Coatings\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0300944024006349\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Organic Coatings","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300944024006349","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Green superhydrophobic surface engineering of PET fabric for advanced water-solvent separation
This paper presents the preparation of the PET membrane for effective organic solvent separation achieved through an advanced superhydrophobic surface engineering of PET fabric utilizing biomimicry and a green chemistry approach. The superhydrophobicity of the PET surface was reached through a hierarchical nanocomposite coating that involved the integration of biomimetic polydopamine (PDA) coating, green-synthesized zinc oxide (ZnO) nanoparticles (NPs), and non-fluorinated quaternary ammonium cation silane (Si-QAC) coverage. The morphology and surface chemical composition of the resultant Si-QAC/ZnO/PDA@PET membrane were characterized by SEM, EDS, FT-IR, XRD, and AFM analysis. The surface topography and water contact angle were also correlated with surface roughness and its superhydrophobicity. The resulting Si-QAC/ZnO/PDA@PET membrane exhibited promising superhydrophobic properties, characterized by a water contact angle ranging from 150° to 160° and a roll-off angle between 5° and 2° as well as stability against severe conditions, including acidic and alkaline exposure, mechanical abrasion, and UV radiations. Moreover, the Si-QAC/ZnO/PDA@PET membrane exhibited bacterial repulsive properties against E. coli and Staphylococcus sp. The separation efficiency of various aliphatic and aromatic organic solvents (n-hexane, toluene, chloroform, and petroleum ether) from water higher than 90 % was also observed, making the membrane a potential candidate for different industrial applications, particularly for the separation of organic solvents from water.
期刊介绍:
The aim of this international journal is to analyse and publicise the progress and current state of knowledge in the field of organic coatings and related materials. The Editors and the Editorial Board members will solicit both review and research papers from academic and industrial scientists who are actively engaged in research and development or, in the case of review papers, have extensive experience in the subject to be reviewed. Unsolicited manuscripts will be accepted if they meet the journal''s requirements. The journal publishes papers dealing with such subjects as:
• Chemical, physical and technological properties of organic coatings and related materials
• Problems and methods of preparation, manufacture and application of these materials
• Performance, testing and analysis.