泄漏率预测模型研究及其在双偏置蝶阀多工况转换中的应用

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-10-12 DOI:10.1016/j.nucengdes.2024.113630
Jiangfan Xiong , Yubing Bu , Guojun Zhang , Jian Liu , Guoliang Xu , Xiaoming Huang
{"title":"泄漏率预测模型研究及其在双偏置蝶阀多工况转换中的应用","authors":"Jiangfan Xiong ,&nbsp;Yubing Bu ,&nbsp;Guojun Zhang ,&nbsp;Jian Liu ,&nbsp;Guoliang Xu ,&nbsp;Xiaoming Huang","doi":"10.1016/j.nucengdes.2024.113630","DOIUrl":null,"url":null,"abstract":"<div><div>A significant number of valves constitute a vital component of the containment pressure boundary of a nuclear power plant, and their leakage rates under accident conditions must be tightly controlled. In this study, a methodology for the construction of a predictive model of valve leakage rate is put forth the study of valve leakage characteristics under accident conditions. Taking the double-offset butterfly valves (DOBV) as the research object, its multi-parameter leakage rate predictive model is developed through finite element analysis (FEA) of the microscopic and macroscopic contact mechanics of the sealing, that are then combined with an existing interfacial leakage model. This model is able to predict the effects of different parameters, including the temperature, pressure, and humidity. It is then verified by comparing it with the experimental values of the multi-operating conditions leakage test. Based on this model, the impact of operating condition parameters on the leakage rate of the valve is numerically studied and a dimensionless leakage rate relationship is proposed: <span><math><mrow><msub><mi>Q</mi><mtext>r</mtext></msub><mo>=</mo><msub><mi>E</mi><mtext>P</mtext></msub><msub><mi>E</mi><mtext>T</mtext></msub><msub><mi>E</mi><mtext>m</mtext></msub></mrow></math></span>, where <span><math><msub><mi>E</mi><mtext>P</mtext></msub></math></span>,<span><math><msub><mi>E</mi><mtext>T</mtext></msub></math></span>,and <span><math><msub><mi>E</mi><mtext>m</mtext></msub></math></span> are pressure, temperature, and humidity conversion factors, respectively. These factors are in a power function relationship with their respective dimensionless state parameters. Further analysis demonstrates that the powers of these relationships are independent of roughness and weakly correlated with seal material and seal structure. The leakage pattern of this valve under two hypothetical accident scenarios is comparatively analyzed by applying the conversion equation, and some useful conclusions related to dynamic leakage rate control are drawn. The methodology presented in this paper is central to the contact seal leakage mechanism and can be extended to other containment penetrations.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on a leakage rate predictive model with Application in Multi-Conditions conversion for Double-Offset butterfly valves\",\"authors\":\"Jiangfan Xiong ,&nbsp;Yubing Bu ,&nbsp;Guojun Zhang ,&nbsp;Jian Liu ,&nbsp;Guoliang Xu ,&nbsp;Xiaoming Huang\",\"doi\":\"10.1016/j.nucengdes.2024.113630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A significant number of valves constitute a vital component of the containment pressure boundary of a nuclear power plant, and their leakage rates under accident conditions must be tightly controlled. In this study, a methodology for the construction of a predictive model of valve leakage rate is put forth the study of valve leakage characteristics under accident conditions. Taking the double-offset butterfly valves (DOBV) as the research object, its multi-parameter leakage rate predictive model is developed through finite element analysis (FEA) of the microscopic and macroscopic contact mechanics of the sealing, that are then combined with an existing interfacial leakage model. This model is able to predict the effects of different parameters, including the temperature, pressure, and humidity. It is then verified by comparing it with the experimental values of the multi-operating conditions leakage test. Based on this model, the impact of operating condition parameters on the leakage rate of the valve is numerically studied and a dimensionless leakage rate relationship is proposed: <span><math><mrow><msub><mi>Q</mi><mtext>r</mtext></msub><mo>=</mo><msub><mi>E</mi><mtext>P</mtext></msub><msub><mi>E</mi><mtext>T</mtext></msub><msub><mi>E</mi><mtext>m</mtext></msub></mrow></math></span>, where <span><math><msub><mi>E</mi><mtext>P</mtext></msub></math></span>,<span><math><msub><mi>E</mi><mtext>T</mtext></msub></math></span>,and <span><math><msub><mi>E</mi><mtext>m</mtext></msub></math></span> are pressure, temperature, and humidity conversion factors, respectively. These factors are in a power function relationship with their respective dimensionless state parameters. Further analysis demonstrates that the powers of these relationships are independent of roughness and weakly correlated with seal material and seal structure. The leakage pattern of this valve under two hypothetical accident scenarios is comparatively analyzed by applying the conversion equation, and some useful conclusions related to dynamic leakage rate control are drawn. The methodology presented in this paper is central to the contact seal leakage mechanism and can be extended to other containment penetrations.</div></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0029549324007301\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029549324007301","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

大量阀门是核电站安全壳压力边界的重要组成部分,必须严格控制其在事故条件下的泄漏率。本研究提出了一种构建阀门泄漏率预测模型的方法,以研究事故工况下的阀门泄漏特性。以双偏置蝶阀(DOBV)为研究对象,通过对密封的微观和宏观接触力学进行有限元分析(FEA),结合现有的界面泄漏模型,建立了多参数泄漏率预测模型。该模型能够预测不同参数的影响,包括温度、压力和湿度。然后将其与多工况泄漏测试的实验值进行比较,对其进行验证。基于该模型,对工作条件参数对阀门泄漏率的影响进行了数值研究,并提出了无量纲泄漏率关系:Qr=EPETEm,其中 EP、ET 和 Em 分别为压力、温度和湿度换算系数。这些系数与各自的无量纲状态参数呈幂函数关系。进一步分析表明,这些关系的幂函数与粗糙度无关,与密封材料和密封结构的相关性较弱。应用转换方程比较分析了该阀门在两种假定事故情况下的泄漏模式,并得出了一些与动态泄漏率控制有关的有用结论。本文介绍的方法主要针对接触密封泄漏机理,并可扩展到其他安全壳贯穿件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study on a leakage rate predictive model with Application in Multi-Conditions conversion for Double-Offset butterfly valves
A significant number of valves constitute a vital component of the containment pressure boundary of a nuclear power plant, and their leakage rates under accident conditions must be tightly controlled. In this study, a methodology for the construction of a predictive model of valve leakage rate is put forth the study of valve leakage characteristics under accident conditions. Taking the double-offset butterfly valves (DOBV) as the research object, its multi-parameter leakage rate predictive model is developed through finite element analysis (FEA) of the microscopic and macroscopic contact mechanics of the sealing, that are then combined with an existing interfacial leakage model. This model is able to predict the effects of different parameters, including the temperature, pressure, and humidity. It is then verified by comparing it with the experimental values of the multi-operating conditions leakage test. Based on this model, the impact of operating condition parameters on the leakage rate of the valve is numerically studied and a dimensionless leakage rate relationship is proposed: Qr=EPETEm, where EP,ET,and Em are pressure, temperature, and humidity conversion factors, respectively. These factors are in a power function relationship with their respective dimensionless state parameters. Further analysis demonstrates that the powers of these relationships are independent of roughness and weakly correlated with seal material and seal structure. The leakage pattern of this valve under two hypothetical accident scenarios is comparatively analyzed by applying the conversion equation, and some useful conclusions related to dynamic leakage rate control are drawn. The methodology presented in this paper is central to the contact seal leakage mechanism and can be extended to other containment penetrations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Intentions to move abroad among medical students: a cross-sectional study to investigate determinants and opinions. Analysis of Medical Rehabilitation Needs of 2023 Kahramanmaraş Earthquake Victims: Adıyaman Example. Efficacy of whole body vibration on fascicle length and joint angle in children with hemiplegic cerebral palsy. The change process questionnaire (CPQ): A psychometric validation. Prevalence and predictors of hand hygiene compliance in clinical, surgical and intensive care unit wards: results of a second cross-sectional study at the Umberto I teaching hospital of Rome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1