{"title":"模拟海洋环境中作为焊接接头的 Q690qE 高强度桥梁钢的腐蚀疲劳开裂行为","authors":"Cuiping Lu, Qiong Yao, Ningning Li, Liyang Sun, Wenhe Dai, Chuang Zhang, Hongchi Ma","doi":"10.1111/ffe.14427","DOIUrl":null,"url":null,"abstract":"<p>Corrosion fatigue behavior and mechanism of the weld joint of Q690qE high-strength bridge steel was investigated in a simulated marine environment. It reveals the sub-critical heat-affected zone (SCHAZ) and coarse-grained heat-affected zone (CGHAZ) are the most vulnerable sites to corrosion fatigue cracking. The CGHAZ of the Q690qE steel weld joint was prone to corrosion fatigue initiation mainly because of micro-galvanic corrosion between CGHAZ and weld metal (WM). The corrosion fatigue failure in SCHAZ mainly resulted from local stress/strain concentration due to weld softening. The final fracture location was determined by the competition between these two effects.</p>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"47 11","pages":"4341-4355"},"PeriodicalIF":3.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Corrosion fatigue cracking behaviors of Q690qE high-strength bridge steel as a weld joint in simulated marine environment\",\"authors\":\"Cuiping Lu, Qiong Yao, Ningning Li, Liyang Sun, Wenhe Dai, Chuang Zhang, Hongchi Ma\",\"doi\":\"10.1111/ffe.14427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Corrosion fatigue behavior and mechanism of the weld joint of Q690qE high-strength bridge steel was investigated in a simulated marine environment. It reveals the sub-critical heat-affected zone (SCHAZ) and coarse-grained heat-affected zone (CGHAZ) are the most vulnerable sites to corrosion fatigue cracking. The CGHAZ of the Q690qE steel weld joint was prone to corrosion fatigue initiation mainly because of micro-galvanic corrosion between CGHAZ and weld metal (WM). The corrosion fatigue failure in SCHAZ mainly resulted from local stress/strain concentration due to weld softening. The final fracture location was determined by the competition between these two effects.</p>\",\"PeriodicalId\":12298,\"journal\":{\"name\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"volume\":\"47 11\",\"pages\":\"4341-4355\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14427\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14427","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Corrosion fatigue cracking behaviors of Q690qE high-strength bridge steel as a weld joint in simulated marine environment
Corrosion fatigue behavior and mechanism of the weld joint of Q690qE high-strength bridge steel was investigated in a simulated marine environment. It reveals the sub-critical heat-affected zone (SCHAZ) and coarse-grained heat-affected zone (CGHAZ) are the most vulnerable sites to corrosion fatigue cracking. The CGHAZ of the Q690qE steel weld joint was prone to corrosion fatigue initiation mainly because of micro-galvanic corrosion between CGHAZ and weld metal (WM). The corrosion fatigue failure in SCHAZ mainly resulted from local stress/strain concentration due to weld softening. The final fracture location was determined by the competition between these two effects.
期刊介绍:
Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.