Juan Avilés, Daniel Guillen, Luis Ibarra, Jesús Daniel Dávalos-Soto
{"title":"重新配置主动配电网络,作为解决发电和用电动态变化的一种手段","authors":"Juan Avilés, Daniel Guillen, Luis Ibarra, Jesús Daniel Dávalos-Soto","doi":"10.1049/gtd2.13264","DOIUrl":null,"url":null,"abstract":"<p>The integration of alternative energy sources, storage systems, and modern loads into the distribution grid is complicating its operation and maintenance. Variability in individual generation and consumption elements dynamically affects voltage profiles, which in turn undermines efficiency and power quality. This study proposes to address this dynamical variability using an online reconfiguration approach that involves opening and closing switches to modify the grid's topology and adjust voltage levels in response to load/generation variations. Other grid optimization techniques, based on reconfiguration, typically focus on static, fully instrumented grids with predictable parameters and homogeneous changes, aiming to minimize power losses but overlooking the dynamics of variable grid elements. This study proposes a testing approach that is dependent on the estimated transient status of the grid only using a limited number of measurement units and considering the individual-stochastic variations of loads and generators. The proposed approach was tested on the IEEE 33-bus test feeder with up to five varying distributed generators. The results confirm that the algorithm consistently finds a reconfiguration alternative that could enhance system efficiency and voltage profiles, even in the face of dynamic load/generator behavior, demonstrating its effectiveness and online adaptability for grid operation and management tasks.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":"18 19","pages":"3120-3137"},"PeriodicalIF":2.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13264","citationCount":"0","resultStr":"{\"title\":\"Reconfiguration of active distribution networks as a means to address generation and consumption dynamic variability\",\"authors\":\"Juan Avilés, Daniel Guillen, Luis Ibarra, Jesús Daniel Dávalos-Soto\",\"doi\":\"10.1049/gtd2.13264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The integration of alternative energy sources, storage systems, and modern loads into the distribution grid is complicating its operation and maintenance. Variability in individual generation and consumption elements dynamically affects voltage profiles, which in turn undermines efficiency and power quality. This study proposes to address this dynamical variability using an online reconfiguration approach that involves opening and closing switches to modify the grid's topology and adjust voltage levels in response to load/generation variations. Other grid optimization techniques, based on reconfiguration, typically focus on static, fully instrumented grids with predictable parameters and homogeneous changes, aiming to minimize power losses but overlooking the dynamics of variable grid elements. This study proposes a testing approach that is dependent on the estimated transient status of the grid only using a limited number of measurement units and considering the individual-stochastic variations of loads and generators. The proposed approach was tested on the IEEE 33-bus test feeder with up to five varying distributed generators. The results confirm that the algorithm consistently finds a reconfiguration alternative that could enhance system efficiency and voltage profiles, even in the face of dynamic load/generator behavior, demonstrating its effectiveness and online adaptability for grid operation and management tasks.</p>\",\"PeriodicalId\":13261,\"journal\":{\"name\":\"Iet Generation Transmission & Distribution\",\"volume\":\"18 19\",\"pages\":\"3120-3137\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13264\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Generation Transmission & Distribution\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.13264\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Generation Transmission & Distribution","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.13264","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Reconfiguration of active distribution networks as a means to address generation and consumption dynamic variability
The integration of alternative energy sources, storage systems, and modern loads into the distribution grid is complicating its operation and maintenance. Variability in individual generation and consumption elements dynamically affects voltage profiles, which in turn undermines efficiency and power quality. This study proposes to address this dynamical variability using an online reconfiguration approach that involves opening and closing switches to modify the grid's topology and adjust voltage levels in response to load/generation variations. Other grid optimization techniques, based on reconfiguration, typically focus on static, fully instrumented grids with predictable parameters and homogeneous changes, aiming to minimize power losses but overlooking the dynamics of variable grid elements. This study proposes a testing approach that is dependent on the estimated transient status of the grid only using a limited number of measurement units and considering the individual-stochastic variations of loads and generators. The proposed approach was tested on the IEEE 33-bus test feeder with up to five varying distributed generators. The results confirm that the algorithm consistently finds a reconfiguration alternative that could enhance system efficiency and voltage profiles, even in the face of dynamic load/generator behavior, demonstrating its effectiveness and online adaptability for grid operation and management tasks.
期刊介绍:
IET Generation, Transmission & Distribution is intended as a forum for the publication and discussion of current practice and future developments in electric power generation, transmission and distribution. Practical papers in which examples of good present practice can be described and disseminated are particularly sought. Papers of high technical merit relying on mathematical arguments and computation will be considered, but authors are asked to relegate, as far as possible, the details of analysis to an appendix.
The scope of IET Generation, Transmission & Distribution includes the following:
Design of transmission and distribution systems
Operation and control of power generation
Power system management, planning and economics
Power system operation, protection and control
Power system measurement and modelling
Computer applications and computational intelligence in power flexible AC or DC transmission systems
Special Issues. Current Call for papers:
Next Generation of Synchrophasor-based Power System Monitoring, Operation and Control - https://digital-library.theiet.org/files/IET_GTD_CFP_NGSPSMOC.pdf