{"title":"布鲁哈特阶的赋形商、准对称品种和滕伯里-里布代数","authors":"Nantel Bergeron, Lucas Gagnon","doi":"10.1112/jlms.13007","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>R</mi>\n <mi>n</mi>\n </msub>\n <mo>=</mo>\n <mi>Q</mi>\n <mrow>\n <mo>[</mo>\n <msub>\n <mi>x</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>x</mi>\n <mn>2</mn>\n </msub>\n <mo>,</mo>\n <mtext>…</mtext>\n <mo>,</mo>\n <msub>\n <mi>x</mi>\n <mi>n</mi>\n </msub>\n <mo>]</mo>\n </mrow>\n </mrow>\n <annotation>$R_n=\\mathbb {Q}[x_1,x_2,\\ldots ,x_n]$</annotation>\n </semantics></math> be the ring of polynomials in <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math> variables and consider the ideal <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>⟨</mo>\n <msubsup>\n <mi>QSym</mi>\n <mi>n</mi>\n <mo>+</mo>\n </msubsup>\n <mo>⟩</mo>\n </mrow>\n <mo>⊆</mo>\n <msub>\n <mi>R</mi>\n <mi>n</mi>\n </msub>\n </mrow>\n <annotation>$\\langle \\mathrm{QSym}_{n}^{+}\\rangle \\subseteq R_n$</annotation>\n </semantics></math> generated by quasisymmetric polynomials without constant term. It was shown by J. C. Aval, F. Bergeron, and N. Bergeron that <span></span><math>\n <semantics>\n <mrow>\n <mo>dim</mo>\n <mo>(</mo>\n <msub>\n <mi>R</mi>\n <mi>n</mi>\n </msub>\n <mo>/</mo>\n <mrow>\n <mo>⟨</mo>\n <msubsup>\n <mi>QSym</mi>\n <mi>n</mi>\n <mo>+</mo>\n </msubsup>\n <mo>⟩</mo>\n </mrow>\n <mo>)</mo>\n <mo>=</mo>\n <msub>\n <mi>C</mi>\n <mi>n</mi>\n </msub>\n </mrow>\n <annotation>$\\dim \\big (R_n\\big /\\langle \\mathrm{QSym}_{n}^{+} \\rangle \\big)=C_n$</annotation>\n </semantics></math> the <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>th Catalan number. In the present work, we explain this phenomenon by defining a set of permutations <span></span><math>\n <semantics>\n <msub>\n <mi>QSV</mi>\n <mi>n</mi>\n </msub>\n <annotation>$\\mathrm{QSV}_{n}$</annotation>\n </semantics></math> with the following properties: first, <span></span><math>\n <semantics>\n <msub>\n <mi>QSV</mi>\n <mi>n</mi>\n </msub>\n <annotation>$\\mathrm{QSV}_{n}$</annotation>\n </semantics></math> is a basis of the Temperley–Lieb algebra <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>TL</mi>\n <mi>n</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mn>2</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathsf {TL}_{n}(2)$</annotation>\n </semantics></math>, and second, when considering <span></span><math>\n <semantics>\n <msub>\n <mi>QSV</mi>\n <mi>n</mi>\n </msub>\n <annotation>$\\mathrm{QSV}_{n}$</annotation>\n </semantics></math> as a collection of points in <span></span><math>\n <semantics>\n <msup>\n <mi>Q</mi>\n <mi>n</mi>\n </msup>\n <annotation>$\\mathbb {Q}^{n}$</annotation>\n </semantics></math>, the top-degree homogeneous component of the vanishing ideal <span></span><math>\n <semantics>\n <mrow>\n <mi>I</mi>\n <mo>(</mo>\n <msub>\n <mi>QSV</mi>\n <mi>n</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathbf {I}(\\mathrm{QSV}_{n})$</annotation>\n </semantics></math> is <span></span><math>\n <semantics>\n <mrow>\n <mo>⟨</mo>\n <msubsup>\n <mi>QSym</mi>\n <mi>n</mi>\n <mo>+</mo>\n </msubsup>\n <mo>⟩</mo>\n </mrow>\n <annotation>$\\langle \\mathrm{QSym}_{n}^{+}\\rangle$</annotation>\n </semantics></math>. Our construction has a few byproducts that are independently noteworthy. We define an equivalence relation <span></span><math>\n <semantics>\n <mo>∼</mo>\n <annotation>$\\sim$</annotation>\n </semantics></math> on the symmetric group <span></span><math>\n <semantics>\n <msub>\n <mi>S</mi>\n <mi>n</mi>\n </msub>\n <annotation>$S_{n}$</annotation>\n </semantics></math> using weak excedances and show that its equivalence classes are naturally indexed by noncrossing partitions. Each equivalence class is an interval in the Bruhat order between an element of <span></span><math>\n <semantics>\n <msub>\n <mi>QSV</mi>\n <mi>n</mi>\n </msub>\n <annotation>$\\mathrm{QSV}_{n}$</annotation>\n </semantics></math> and a 321-avoiding permutation. Furthermore, the Bruhat order induces a well-defined order on <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>S</mi>\n <mi>n</mi>\n </msub>\n <mo>/</mo>\n <mspace></mspace>\n <mspace></mspace>\n <mo>∼</mo>\n </mrow>\n <annotation>$S_{n}\\big /\\!\\!\\sim$</annotation>\n </semantics></math>. Finally, we show that any section of the quotient <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>S</mi>\n <mi>n</mi>\n </msub>\n <mo>/</mo>\n <mspace></mspace>\n <mspace></mspace>\n <mo>∼</mo>\n </mrow>\n <annotation>$S_{n}\\big /\\!\\!\\sim$</annotation>\n </semantics></math> gives an (often novel) basis for <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>TL</mi>\n <mi>n</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mn>2</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathsf {TL}_{n}(2)$</annotation>\n </semantics></math>.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.13007","citationCount":"0","resultStr":"{\"title\":\"The excedance quotient of the Bruhat order, quasisymmetric varieties, and Temperley–Lieb algebras\",\"authors\":\"Nantel Bergeron, Lucas Gagnon\",\"doi\":\"10.1112/jlms.13007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>R</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>=</mo>\\n <mi>Q</mi>\\n <mrow>\\n <mo>[</mo>\\n <msub>\\n <mi>x</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>x</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>,</mo>\\n <mtext>…</mtext>\\n <mo>,</mo>\\n <msub>\\n <mi>x</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>]</mo>\\n </mrow>\\n </mrow>\\n <annotation>$R_n=\\\\mathbb {Q}[x_1,x_2,\\\\ldots ,x_n]$</annotation>\\n </semantics></math> be the ring of polynomials in <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math> variables and consider the ideal <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>⟨</mo>\\n <msubsup>\\n <mi>QSym</mi>\\n <mi>n</mi>\\n <mo>+</mo>\\n </msubsup>\\n <mo>⟩</mo>\\n </mrow>\\n <mo>⊆</mo>\\n <msub>\\n <mi>R</mi>\\n <mi>n</mi>\\n </msub>\\n </mrow>\\n <annotation>$\\\\langle \\\\mathrm{QSym}_{n}^{+}\\\\rangle \\\\subseteq R_n$</annotation>\\n </semantics></math> generated by quasisymmetric polynomials without constant term. It was shown by J. C. Aval, F. Bergeron, and N. Bergeron that <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>dim</mo>\\n <mo>(</mo>\\n <msub>\\n <mi>R</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>/</mo>\\n <mrow>\\n <mo>⟨</mo>\\n <msubsup>\\n <mi>QSym</mi>\\n <mi>n</mi>\\n <mo>+</mo>\\n </msubsup>\\n <mo>⟩</mo>\\n </mrow>\\n <mo>)</mo>\\n <mo>=</mo>\\n <msub>\\n <mi>C</mi>\\n <mi>n</mi>\\n </msub>\\n </mrow>\\n <annotation>$\\\\dim \\\\big (R_n\\\\big /\\\\langle \\\\mathrm{QSym}_{n}^{+} \\\\rangle \\\\big)=C_n$</annotation>\\n </semantics></math> the <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math>th Catalan number. In the present work, we explain this phenomenon by defining a set of permutations <span></span><math>\\n <semantics>\\n <msub>\\n <mi>QSV</mi>\\n <mi>n</mi>\\n </msub>\\n <annotation>$\\\\mathrm{QSV}_{n}$</annotation>\\n </semantics></math> with the following properties: first, <span></span><math>\\n <semantics>\\n <msub>\\n <mi>QSV</mi>\\n <mi>n</mi>\\n </msub>\\n <annotation>$\\\\mathrm{QSV}_{n}$</annotation>\\n </semantics></math> is a basis of the Temperley–Lieb algebra <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>TL</mi>\\n <mi>n</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mn>2</mn>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathsf {TL}_{n}(2)$</annotation>\\n </semantics></math>, and second, when considering <span></span><math>\\n <semantics>\\n <msub>\\n <mi>QSV</mi>\\n <mi>n</mi>\\n </msub>\\n <annotation>$\\\\mathrm{QSV}_{n}$</annotation>\\n </semantics></math> as a collection of points in <span></span><math>\\n <semantics>\\n <msup>\\n <mi>Q</mi>\\n <mi>n</mi>\\n </msup>\\n <annotation>$\\\\mathbb {Q}^{n}$</annotation>\\n </semantics></math>, the top-degree homogeneous component of the vanishing ideal <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>I</mi>\\n <mo>(</mo>\\n <msub>\\n <mi>QSV</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\mathbf {I}(\\\\mathrm{QSV}_{n})$</annotation>\\n </semantics></math> is <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>⟨</mo>\\n <msubsup>\\n <mi>QSym</mi>\\n <mi>n</mi>\\n <mo>+</mo>\\n </msubsup>\\n <mo>⟩</mo>\\n </mrow>\\n <annotation>$\\\\langle \\\\mathrm{QSym}_{n}^{+}\\\\rangle$</annotation>\\n </semantics></math>. Our construction has a few byproducts that are independently noteworthy. We define an equivalence relation <span></span><math>\\n <semantics>\\n <mo>∼</mo>\\n <annotation>$\\\\sim$</annotation>\\n </semantics></math> on the symmetric group <span></span><math>\\n <semantics>\\n <msub>\\n <mi>S</mi>\\n <mi>n</mi>\\n </msub>\\n <annotation>$S_{n}$</annotation>\\n </semantics></math> using weak excedances and show that its equivalence classes are naturally indexed by noncrossing partitions. Each equivalence class is an interval in the Bruhat order between an element of <span></span><math>\\n <semantics>\\n <msub>\\n <mi>QSV</mi>\\n <mi>n</mi>\\n </msub>\\n <annotation>$\\\\mathrm{QSV}_{n}$</annotation>\\n </semantics></math> and a 321-avoiding permutation. Furthermore, the Bruhat order induces a well-defined order on <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>S</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>/</mo>\\n <mspace></mspace>\\n <mspace></mspace>\\n <mo>∼</mo>\\n </mrow>\\n <annotation>$S_{n}\\\\big /\\\\!\\\\!\\\\sim$</annotation>\\n </semantics></math>. Finally, we show that any section of the quotient <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>S</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>/</mo>\\n <mspace></mspace>\\n <mspace></mspace>\\n <mo>∼</mo>\\n </mrow>\\n <annotation>$S_{n}\\\\big /\\\\!\\\\!\\\\sim$</annotation>\\n </semantics></math> gives an (often novel) basis for <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>TL</mi>\\n <mi>n</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mn>2</mn>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathsf {TL}_{n}(2)$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.13007\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.13007\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.13007","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
设 R n = Q [ x 1 , x 2 , ... , x n ] $R_n=\mathbb {Q}[x_1,x_2,\ldots ,x_n]$ 是 n 个 $n$ 变量的多项式环,并考虑由无常数项的准对称多项式产生的理想 ⟨ QSym n + ⟩ ⊆ R n $langle \mathrm{QSym}_{n}^{+}\rangle \subseteq R_n$。J. C. Aval、F. Bergeron 和 N. Bergeron 证明 dim ( R n / ⟨ QSym n + ⟩ ) = C n $dim \big (R_n\big /\langle \mathrm{QSym}_{n}^{+} \rangle \big)=C_n$ 第 n 个 $n$ 加泰罗尼亚数。In the present work, we explain this phenomenon by defining a set of permutations QSV n $\mathrm{QSV}_{n}$ with the following properties: first, QSV n $\mathrm{QSV}_{n}$ is a basis of the Temperley–Lieb algebra TL n ( 2 ) $\mathsf {TL}_{n}(2)$ , and second, when considering QSV n $\mathrm{QSV}_{n}$ as a collection of points in Q n $\mathbb {Q}^{n}$ , the top-degree homogeneous component of the vanishing ideal I ( QSV n ) $\mathbf {I}(\mathrm{QSV}_{n})$ is ⟨ QSym n + ⟩ $\langle \mathrm{QSym}_{n}^{+}\rangle$ .我们的构造有一些值得注意的副产品。我们在对称群 S n $S_{n}$ 上定义了一个等价关系 ∼ $\sim$ ,并证明其等价类是由非交叉分区自然索引的。每个等价类都是 QSV n $\mathrm{QSV}_{n}$ 的一个元素与一个 321 避开排列之间的布鲁哈特阶间隔。
The excedance quotient of the Bruhat order, quasisymmetric varieties, and Temperley–Lieb algebras
Let be the ring of polynomials in variables and consider the ideal generated by quasisymmetric polynomials without constant term. It was shown by J. C. Aval, F. Bergeron, and N. Bergeron that the th Catalan number. In the present work, we explain this phenomenon by defining a set of permutations with the following properties: first, is a basis of the Temperley–Lieb algebra , and second, when considering as a collection of points in , the top-degree homogeneous component of the vanishing ideal is . Our construction has a few byproducts that are independently noteworthy. We define an equivalence relation on the symmetric group using weak excedances and show that its equivalence classes are naturally indexed by noncrossing partitions. Each equivalence class is an interval in the Bruhat order between an element of and a 321-avoiding permutation. Furthermore, the Bruhat order induces a well-defined order on . Finally, we show that any section of the quotient gives an (often novel) basis for .
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.