视觉、听觉和模式无关区域的情绪神经表征反映了非同步概念知识

IF 3.5 2区 医学 Q1 NEUROIMAGING Human Brain Mapping Pub Date : 2024-10-12 DOI:10.1002/hbm.70040
Chuanji Gao, Sewon Oh, Xuan Yang, Jacob M. Stanley, Svetlana V. Shinkareva
{"title":"视觉、听觉和模式无关区域的情绪神经表征反映了非同步概念知识","authors":"Chuanji Gao,&nbsp;Sewon Oh,&nbsp;Xuan Yang,&nbsp;Jacob M. Stanley,&nbsp;Svetlana V. Shinkareva","doi":"10.1002/hbm.70040","DOIUrl":null,"url":null,"abstract":"<p>Growing evidence suggests that conceptual knowledge influences emotion perception, yet the neural mechanisms underlying this effect are not fully understood. Recent studies have shown that brain representations of facial emotion categories in visual-perceptual areas are predicted by conceptual knowledge, but it remains to be seen if auditory regions are similarly affected. Moreover, it is not fully clear whether these conceptual influences operate at a modality-independent level. To address these questions, we conducted a functional magnetic resonance imaging study presenting participants with both facial and vocal emotional stimuli. This dual-modality approach allowed us to investigate effects on both modality-specific and modality-independent brain regions. Using univariate and representational similarity analyses, we found that brain representations in both visual (middle and lateral occipital cortices) and auditory (superior temporal gyrus) regions were predicted by conceptual understanding of emotions for faces and voices, respectively. Additionally, we discovered that conceptual knowledge also influenced supra-modal representations in the superior temporal sulcus. Dynamic causal modeling revealed a brain network showing both bottom-up and top-down flows, suggesting a complex interplay of modality-specific and modality-independent regions in emotional processing. These findings collectively indicate that the neural representations of emotions in both sensory-perceptual and modality-independent regions are likely shaped by each individual's conceptual knowledge.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.70040","citationCount":"0","resultStr":"{\"title\":\"Neural Representations of Emotions in Visual, Auditory, and Modality-Independent Regions Reflect Idiosyncratic Conceptual Knowledge\",\"authors\":\"Chuanji Gao,&nbsp;Sewon Oh,&nbsp;Xuan Yang,&nbsp;Jacob M. Stanley,&nbsp;Svetlana V. Shinkareva\",\"doi\":\"10.1002/hbm.70040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Growing evidence suggests that conceptual knowledge influences emotion perception, yet the neural mechanisms underlying this effect are not fully understood. Recent studies have shown that brain representations of facial emotion categories in visual-perceptual areas are predicted by conceptual knowledge, but it remains to be seen if auditory regions are similarly affected. Moreover, it is not fully clear whether these conceptual influences operate at a modality-independent level. To address these questions, we conducted a functional magnetic resonance imaging study presenting participants with both facial and vocal emotional stimuli. This dual-modality approach allowed us to investigate effects on both modality-specific and modality-independent brain regions. Using univariate and representational similarity analyses, we found that brain representations in both visual (middle and lateral occipital cortices) and auditory (superior temporal gyrus) regions were predicted by conceptual understanding of emotions for faces and voices, respectively. Additionally, we discovered that conceptual knowledge also influenced supra-modal representations in the superior temporal sulcus. Dynamic causal modeling revealed a brain network showing both bottom-up and top-down flows, suggesting a complex interplay of modality-specific and modality-independent regions in emotional processing. These findings collectively indicate that the neural representations of emotions in both sensory-perceptual and modality-independent regions are likely shaped by each individual's conceptual knowledge.</p>\",\"PeriodicalId\":13019,\"journal\":{\"name\":\"Human Brain Mapping\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.70040\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Brain Mapping\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70040\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70040","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

摘要

越来越多的证据表明,概念性知识会影响情绪感知,但这种影响背后的神经机制尚未完全明了。最近的研究表明,视觉感知区域中面部情绪类别的大脑表征会受到概念知识的影响,但听觉区域是否也受到类似的影响还有待观察。此外,目前还不完全清楚这些概念影响是否在与模式无关的水平上发挥作用。为了解决这些问题,我们进行了一项功能磁共振成像研究,向参与者展示面部和声音情绪刺激。这种双模态方法使我们能够研究对特定模态和独立于模态的大脑区域的影响。通过单变量和表征相似性分析,我们发现视觉(枕叶中层和外侧皮层)和听觉(颞上回)区域的大脑表征分别受到对面部和声音情绪概念理解的预测。此外,我们还发现,概念性知识也会影响颞上沟的超模态表征。动态因果建模揭示了一个同时显示自下而上和自上而下流动的大脑网络,这表明在情绪处理过程中,特定于模式的区域和独立于模式的区域之间存在着复杂的相互作用。这些发现共同表明,情绪在感官知觉区域和模式无关区域的神经表征很可能是由每个人的概念知识形成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neural Representations of Emotions in Visual, Auditory, and Modality-Independent Regions Reflect Idiosyncratic Conceptual Knowledge

Growing evidence suggests that conceptual knowledge influences emotion perception, yet the neural mechanisms underlying this effect are not fully understood. Recent studies have shown that brain representations of facial emotion categories in visual-perceptual areas are predicted by conceptual knowledge, but it remains to be seen if auditory regions are similarly affected. Moreover, it is not fully clear whether these conceptual influences operate at a modality-independent level. To address these questions, we conducted a functional magnetic resonance imaging study presenting participants with both facial and vocal emotional stimuli. This dual-modality approach allowed us to investigate effects on both modality-specific and modality-independent brain regions. Using univariate and representational similarity analyses, we found that brain representations in both visual (middle and lateral occipital cortices) and auditory (superior temporal gyrus) regions were predicted by conceptual understanding of emotions for faces and voices, respectively. Additionally, we discovered that conceptual knowledge also influenced supra-modal representations in the superior temporal sulcus. Dynamic causal modeling revealed a brain network showing both bottom-up and top-down flows, suggesting a complex interplay of modality-specific and modality-independent regions in emotional processing. These findings collectively indicate that the neural representations of emotions in both sensory-perceptual and modality-independent regions are likely shaped by each individual's conceptual knowledge.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Human Brain Mapping
Human Brain Mapping 医学-核医学
CiteScore
8.30
自引率
6.20%
发文量
401
审稿时长
3-6 weeks
期刊介绍: Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged. Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.
期刊最新文献
Alterations of Excitation–Inhibition Balance and Brain Network Dynamics Support Sensory Deprivation Theory in Presbycusis Characterization and Mitigation of a Simultaneous Multi-Slice fMRI Artifact: Multiband Artifact Regression in Simultaneous Slices Frontoparietal Structural Network Disconnections Correlate With Outcome After a Severe Stroke Olfactory Dysfunction and Limbic Hypoactivation in Temporal Lobe Epilepsy Pain-Discriminating Information Decoded From Spatiotemporal Patterns of Hemodynamic Responses Measured by fMRI in the Human Brain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1