{"title":"基于含有 Co(II)、Ni(II)、Cu(II) 和 Zn(II) 离子的偶氮亚甲基螯合物的强大体外抗结核、抗菌和抗炎活性:合成、表征和 Docking 相互作用方面的研究","authors":"Manju Rani, Jai Devi, Jai Kumar, Dhananjay Sharma","doi":"10.1002/aoc.7664","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In recent times, there has been a growing exploration of transition metal complexes as potential solutions for significant health challenges, including tuberculosis, microbes infection, and inflammation. Therefore, in our ongoing effort to identify biologically effective agents, Co(II), Ni(II), Cu(II), and Zn(II) metal complexes of H<sub>2</sub>L<sup>1</sup>–H<sub>2</sub>L<sup>2</sup> hydrazone ligands were synthesized. The structural features of synthesized compounds were recognized by employing several techniques such as FT-IR, <sup>1</sup>H NMR, <sup>13</sup>C NMR, powder x-ray diffraction (XRD), UV-Vis, ESR, TG-DTA, mass spectrometry, and molar conductance measurements. The bonding of ligands via O<sub>phenolic</sub>, O<sub>enolic</sub>, and N<sub>azomethine</sub> donor atoms and the attachment of the three water molecules with metal ion to form the octahedral structure of complexes were corroborated by different spectroscopic techniques. The anti-tuberculosis, antimicrobial, and anti-inflammatory activities of the synthesized compounds were assessed using the microplate alamar blue assay, serial dilution, and bovine serum albumin (BSA) methods, respectively, and highlighted the more potency of the complexes than ligands. The synthesized Cu(II) <b>(9</b>) and Zn(II) (<b>10</b>) metal complexes exhibited excellent ability to inhibit the growth of H<sub>37</sub>R<sub>v</sub> strain of <i>Mycobacterium tuberculosis</i> in comparison to standard drug streptomycin. The Cu(II) (<b>6</b> and <b>9</b>) and Zn(II) (<b>10</b>) complexes showed superb ability as antimicrobial agents, whereas Cu(II) (<b>5</b>) and Zn(II) (<b>6</b>) complexes exhibited significant anti-inflammatory ability. The in vitro findings on the antituberculosis activity were reinforced by a significant molecular docking study, which has become a crucial component of computational research utilizing the enzyme Mtb Pks13 thioesterase domain of <i>M. tuberculosis</i>. Additionally, in this research work, the absorption–distribution–metabolism–excretion–toxicity (ADMET) study sparked the compounds' drug-like behavior.</p>\n </div>","PeriodicalId":8344,"journal":{"name":"Applied Organometallic Chemistry","volume":"38 11","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Robust In Vitro Anti-tuberculosis, Antimicrobial, and Anti-inflammatory Activities Based on Azomethine Chelates Incorporating Co(II), Ni (II), Cu(II), and Zn(II) Ions: Synthesis, Characterization, and Investigation of the Aspects of Docking Interaction\",\"authors\":\"Manju Rani, Jai Devi, Jai Kumar, Dhananjay Sharma\",\"doi\":\"10.1002/aoc.7664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In recent times, there has been a growing exploration of transition metal complexes as potential solutions for significant health challenges, including tuberculosis, microbes infection, and inflammation. Therefore, in our ongoing effort to identify biologically effective agents, Co(II), Ni(II), Cu(II), and Zn(II) metal complexes of H<sub>2</sub>L<sup>1</sup>–H<sub>2</sub>L<sup>2</sup> hydrazone ligands were synthesized. The structural features of synthesized compounds were recognized by employing several techniques such as FT-IR, <sup>1</sup>H NMR, <sup>13</sup>C NMR, powder x-ray diffraction (XRD), UV-Vis, ESR, TG-DTA, mass spectrometry, and molar conductance measurements. The bonding of ligands via O<sub>phenolic</sub>, O<sub>enolic</sub>, and N<sub>azomethine</sub> donor atoms and the attachment of the three water molecules with metal ion to form the octahedral structure of complexes were corroborated by different spectroscopic techniques. The anti-tuberculosis, antimicrobial, and anti-inflammatory activities of the synthesized compounds were assessed using the microplate alamar blue assay, serial dilution, and bovine serum albumin (BSA) methods, respectively, and highlighted the more potency of the complexes than ligands. The synthesized Cu(II) <b>(9</b>) and Zn(II) (<b>10</b>) metal complexes exhibited excellent ability to inhibit the growth of H<sub>37</sub>R<sub>v</sub> strain of <i>Mycobacterium tuberculosis</i> in comparison to standard drug streptomycin. The Cu(II) (<b>6</b> and <b>9</b>) and Zn(II) (<b>10</b>) complexes showed superb ability as antimicrobial agents, whereas Cu(II) (<b>5</b>) and Zn(II) (<b>6</b>) complexes exhibited significant anti-inflammatory ability. The in vitro findings on the antituberculosis activity were reinforced by a significant molecular docking study, which has become a crucial component of computational research utilizing the enzyme Mtb Pks13 thioesterase domain of <i>M. tuberculosis</i>. Additionally, in this research work, the absorption–distribution–metabolism–excretion–toxicity (ADMET) study sparked the compounds' drug-like behavior.</p>\\n </div>\",\"PeriodicalId\":8344,\"journal\":{\"name\":\"Applied Organometallic Chemistry\",\"volume\":\"38 11\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Organometallic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aoc.7664\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Organometallic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aoc.7664","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
A Robust In Vitro Anti-tuberculosis, Antimicrobial, and Anti-inflammatory Activities Based on Azomethine Chelates Incorporating Co(II), Ni (II), Cu(II), and Zn(II) Ions: Synthesis, Characterization, and Investigation of the Aspects of Docking Interaction
In recent times, there has been a growing exploration of transition metal complexes as potential solutions for significant health challenges, including tuberculosis, microbes infection, and inflammation. Therefore, in our ongoing effort to identify biologically effective agents, Co(II), Ni(II), Cu(II), and Zn(II) metal complexes of H2L1–H2L2 hydrazone ligands were synthesized. The structural features of synthesized compounds were recognized by employing several techniques such as FT-IR, 1H NMR, 13C NMR, powder x-ray diffraction (XRD), UV-Vis, ESR, TG-DTA, mass spectrometry, and molar conductance measurements. The bonding of ligands via Ophenolic, Oenolic, and Nazomethine donor atoms and the attachment of the three water molecules with metal ion to form the octahedral structure of complexes were corroborated by different spectroscopic techniques. The anti-tuberculosis, antimicrobial, and anti-inflammatory activities of the synthesized compounds were assessed using the microplate alamar blue assay, serial dilution, and bovine serum albumin (BSA) methods, respectively, and highlighted the more potency of the complexes than ligands. The synthesized Cu(II) (9) and Zn(II) (10) metal complexes exhibited excellent ability to inhibit the growth of H37Rv strain of Mycobacterium tuberculosis in comparison to standard drug streptomycin. The Cu(II) (6 and 9) and Zn(II) (10) complexes showed superb ability as antimicrobial agents, whereas Cu(II) (5) and Zn(II) (6) complexes exhibited significant anti-inflammatory ability. The in vitro findings on the antituberculosis activity were reinforced by a significant molecular docking study, which has become a crucial component of computational research utilizing the enzyme Mtb Pks13 thioesterase domain of M. tuberculosis. Additionally, in this research work, the absorption–distribution–metabolism–excretion–toxicity (ADMET) study sparked the compounds' drug-like behavior.
期刊介绍:
All new compounds should be satisfactorily identified and proof of their structure given according to generally accepted standards. Structural reports, such as papers exclusively dealing with synthesis and characterization, analytical techniques, or X-ray diffraction studies of metal-organic or organometallic compounds will not be considered. The editors reserve the right to refuse without peer review any manuscript that does not comply with the aims and scope of the journal. Applied Organometallic Chemistry publishes Full Papers, Reviews, Mini Reviews and Communications of scientific research in all areas of organometallic and metal-organic chemistry involving main group metals, transition metals, lanthanides and actinides. All contributions should contain an explicit application of novel compounds, for instance in materials science, nano science, catalysis, chemical vapour deposition, metal-mediated organic synthesis, polymers, bio-organometallics, metallo-therapy, metallo-diagnostics and medicine. Reviews of books covering aspects of the fields of focus are also published.