利用人工神经网络和 ANFIS 对激光强化涡轮叶片进行疲劳预测和优化

IF 3.1 2区 材料科学 Q2 ENGINEERING, MECHANICAL Fatigue & Fracture of Engineering Materials & Structures Pub Date : 2024-08-13 DOI:10.1111/ffe.14409
Manel Ayeb, Mourad Turki, Mounir Frija, Raouf Fathallah
{"title":"利用人工神经网络和 ANFIS 对激光强化涡轮叶片进行疲劳预测和优化","authors":"Manel Ayeb,&nbsp;Mourad Turki,&nbsp;Mounir Frija,&nbsp;Raouf Fathallah","doi":"10.1111/ffe.14409","DOIUrl":null,"url":null,"abstract":"<p>This paper investigates the fatigue behavior prediction of Ti-6Al-4V thin-leading-edge turbine blade specimens treated with laser shock peening (LSP) using two advanced artificial intelligence (AI) methods: artificial neural networks (ANNs) and adaptive network-based fuzzy inference system (ANFIS). The study aims to estimate the endurance under high cycle loading conditions. First, using ABAQUS and MATLAB software, the modified Crossland criterion for uniaxial loading is applied to recalibrate endurance limit values based on modifications induced by the LSP process. Then, these techniques are employed to predict the modified Crossland criterion profile and endurance limit values influenced by the LSP treatment. Specifically, numerical values are used as training and testing data for these AI models. As a result, these AI methods provide highly accurate prediction and optimization of the modified Crossland criterion and endurance limits, demonstrating their reliability and effectiveness.</p>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"47 11","pages":"4030-4047"},"PeriodicalIF":3.1000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fatigue prediction and optimization of laser peened turbine blade using artificial neural networks and ANFIS\",\"authors\":\"Manel Ayeb,&nbsp;Mourad Turki,&nbsp;Mounir Frija,&nbsp;Raouf Fathallah\",\"doi\":\"10.1111/ffe.14409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper investigates the fatigue behavior prediction of Ti-6Al-4V thin-leading-edge turbine blade specimens treated with laser shock peening (LSP) using two advanced artificial intelligence (AI) methods: artificial neural networks (ANNs) and adaptive network-based fuzzy inference system (ANFIS). The study aims to estimate the endurance under high cycle loading conditions. First, using ABAQUS and MATLAB software, the modified Crossland criterion for uniaxial loading is applied to recalibrate endurance limit values based on modifications induced by the LSP process. Then, these techniques are employed to predict the modified Crossland criterion profile and endurance limit values influenced by the LSP treatment. Specifically, numerical values are used as training and testing data for these AI models. As a result, these AI methods provide highly accurate prediction and optimization of the modified Crossland criterion and endurance limits, demonstrating their reliability and effectiveness.</p>\",\"PeriodicalId\":12298,\"journal\":{\"name\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"volume\":\"47 11\",\"pages\":\"4030-4047\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14409\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14409","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文采用两种先进的人工智能(AI)方法:人工神经网络(ANN)和基于自适应网络的模糊推理系统(ANFIS),研究了经过激光冲击强化(LSP)处理的 Ti-6Al-4V 薄导边涡轮叶片试样的疲劳行为预测。该研究旨在估算高循环加载条件下的耐久性。首先,使用 ABAQUS 和 MATLAB 软件,应用修正的 Crossland 单轴加载准则,根据 LSP 过程引起的变化重新校准耐久性极限值。然后,利用这些技术预测受 LSP 处理影响的修正 Crossland 准则剖面和耐力极限值。具体来说,数值被用作这些人工智能模型的训练和测试数据。结果,这些人工智能方法对修正的克罗斯兰标准和耐久极限进行了高度精确的预测和优化,证明了它们的可靠性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fatigue prediction and optimization of laser peened turbine blade using artificial neural networks and ANFIS

This paper investigates the fatigue behavior prediction of Ti-6Al-4V thin-leading-edge turbine blade specimens treated with laser shock peening (LSP) using two advanced artificial intelligence (AI) methods: artificial neural networks (ANNs) and adaptive network-based fuzzy inference system (ANFIS). The study aims to estimate the endurance under high cycle loading conditions. First, using ABAQUS and MATLAB software, the modified Crossland criterion for uniaxial loading is applied to recalibrate endurance limit values based on modifications induced by the LSP process. Then, these techniques are employed to predict the modified Crossland criterion profile and endurance limit values influenced by the LSP treatment. Specifically, numerical values are used as training and testing data for these AI models. As a result, these AI methods provide highly accurate prediction and optimization of the modified Crossland criterion and endurance limits, demonstrating their reliability and effectiveness.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.30
自引率
18.90%
发文量
256
审稿时长
4 months
期刊介绍: Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.
期刊最新文献
Issue Information Study on the Deformation and Energy Evolution of Skarn With Marble Band of Different Orientations Under Cyclic Loading: A Lab-Scale Study Competitive Fracture Mechanism and Microstructure-Related Life Assessment of GH4169 Superalloy in High and Very High Cycle Fatigue Regimes Natural Seawater Impact on Crack Propagation and Fatigue Behavior of Welded Nickel Aluminum Bronze Phase field numerical strategies for positive volumetric strain energy fractures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1