Dr. Yui Sasaki, Kohei Ohshiro, Miyuki Kato, Dr. Daijiro Haba, Prof. Dr. Gojiro Nakagami, Prof. Dr. Tsuyoshi Minami
{"title":"封面:利用基于有机晶体管的酶传感器检测人体汗液中的微摩尔葡萄糖水平(ChemElectroChem 19/2024)","authors":"Dr. Yui Sasaki, Kohei Ohshiro, Miyuki Kato, Dr. Daijiro Haba, Prof. Dr. Gojiro Nakagami, Prof. Dr. Tsuyoshi Minami","doi":"10.1002/celc.202481901","DOIUrl":null,"url":null,"abstract":"<p>The Front Cover illustrates a chemical sensor based on an extended-gate-type organic field-effect transistor (OFET) as a running machine and a runner′s sportswear. The target glucose contained in the runner′s sweat at micromolar levels is an important biomarker that can be collected painlessly. As shown on the front display of the running machine, the OFET-based chemical sensor successfully detects the target sweat glucose with high sensitivity. More information can be found in the Research Article by Tsuyoshi Minami and co-workers (DOI: 10.1002/celc.202400292).\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure>\n </p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"11 19","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202481901","citationCount":"0","resultStr":"{\"title\":\"Front Cover: Detection of Micromolar Glucose Levels in Human Sweat Using an Organic Transistor-Based Enzymatic Sensor (ChemElectroChem 19/2024)\",\"authors\":\"Dr. Yui Sasaki, Kohei Ohshiro, Miyuki Kato, Dr. Daijiro Haba, Prof. Dr. Gojiro Nakagami, Prof. Dr. Tsuyoshi Minami\",\"doi\":\"10.1002/celc.202481901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Front Cover illustrates a chemical sensor based on an extended-gate-type organic field-effect transistor (OFET) as a running machine and a runner′s sportswear. The target glucose contained in the runner′s sweat at micromolar levels is an important biomarker that can be collected painlessly. As shown on the front display of the running machine, the OFET-based chemical sensor successfully detects the target sweat glucose with high sensitivity. More information can be found in the Research Article by Tsuyoshi Minami and co-workers (DOI: 10.1002/celc.202400292).\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure>\\n </p>\",\"PeriodicalId\":142,\"journal\":{\"name\":\"ChemElectroChem\",\"volume\":\"11 19\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202481901\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemElectroChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/celc.202481901\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/celc.202481901","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Front Cover: Detection of Micromolar Glucose Levels in Human Sweat Using an Organic Transistor-Based Enzymatic Sensor (ChemElectroChem 19/2024)
The Front Cover illustrates a chemical sensor based on an extended-gate-type organic field-effect transistor (OFET) as a running machine and a runner′s sportswear. The target glucose contained in the runner′s sweat at micromolar levels is an important biomarker that can be collected painlessly. As shown on the front display of the running machine, the OFET-based chemical sensor successfully detects the target sweat glucose with high sensitivity. More information can be found in the Research Article by Tsuyoshi Minami and co-workers (DOI: 10.1002/celc.202400292).
期刊介绍:
ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.