硅、锡和 SWCNT 的协同作用为全固态锂电池提供了卓越的混合导电浆料涂层阳极

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL ACS Applied Energy Materials Pub Date : 2024-10-02 DOI:10.1021/acsaem.4c0161510.1021/acsaem.4c01615
Yu Chen, Long Li, Jinfeng Huang, Jinwei Hong, Qiaocong Zhang, Wenjian Chen, Deyu Qu and Dan Liu*, 
{"title":"硅、锡和 SWCNT 的协同作用为全固态锂电池提供了卓越的混合导电浆料涂层阳极","authors":"Yu Chen,&nbsp;Long Li,&nbsp;Jinfeng Huang,&nbsp;Jinwei Hong,&nbsp;Qiaocong Zhang,&nbsp;Wenjian Chen,&nbsp;Deyu Qu and Dan Liu*,&nbsp;","doi":"10.1021/acsaem.4c0161510.1021/acsaem.4c01615","DOIUrl":null,"url":null,"abstract":"<p >All-solid-state lithium batteries (ASSLBs) with sulfide electrolytes and high-capacity alloy anodes are among the most promising technologies for achieving high safety and energy density. Herein, we demonstrate a slurry-coated sheet-type electrode consisting of a 99.8 wt % Si–Sn hybrid active material and a 0.2 wt % single-walled carbon nanotube (SWCNT) binder, which could be used as a superior anode in ASSLBs. Compared to the typical composite powder electrode, the sheet-type Si–Sn electrode is free of electrolytes and extra carbon additives, enabling higher energy density at the electrode level but dominantly depending on Li<sup>+</sup> diffusion and electron transport within the Si–Sn active material. It is identified that the lithiated Si–Sn hybrid is an excellent mixed ion-electron conductor that overcomes insufficient electronic or ionic conductivities of lithiated Si and Sn individuals. In addition, using SWCNT instead of ordinary polymer binders can improve electrode integrity and preserve electrical connections during cycling. When paired with a LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> (NCM811) cathode (a mass loading of 11.3 mg cm<sup>–2</sup>), the Si–Sn–SWCNT||NCM811 full cell shows stable cycling for more than 200 cycles at 0.5C with a capacity retention of 85.9%. Even at a high NCM811 loading of 36.4 mg cm<sup>–2</sup>, the full cell exhibits a considerable capacity retention of 85.0% (50 cycles, 0.1C) and a maximum areal capacity of 5.8 mAh cm<sup>–2</sup>. This work provides an industry-compatible method to produce high-performance alloy anodes for ASSLBs.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"7 19","pages":"8658–8668 8658–8668"},"PeriodicalIF":5.4000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergy of Si, Sn, and SWCNT Enables a Superior Mixed-Conductive Slurry-Coated Anode for All-Solid-State Lithium Batteries\",\"authors\":\"Yu Chen,&nbsp;Long Li,&nbsp;Jinfeng Huang,&nbsp;Jinwei Hong,&nbsp;Qiaocong Zhang,&nbsp;Wenjian Chen,&nbsp;Deyu Qu and Dan Liu*,&nbsp;\",\"doi\":\"10.1021/acsaem.4c0161510.1021/acsaem.4c01615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >All-solid-state lithium batteries (ASSLBs) with sulfide electrolytes and high-capacity alloy anodes are among the most promising technologies for achieving high safety and energy density. Herein, we demonstrate a slurry-coated sheet-type electrode consisting of a 99.8 wt % Si–Sn hybrid active material and a 0.2 wt % single-walled carbon nanotube (SWCNT) binder, which could be used as a superior anode in ASSLBs. Compared to the typical composite powder electrode, the sheet-type Si–Sn electrode is free of electrolytes and extra carbon additives, enabling higher energy density at the electrode level but dominantly depending on Li<sup>+</sup> diffusion and electron transport within the Si–Sn active material. It is identified that the lithiated Si–Sn hybrid is an excellent mixed ion-electron conductor that overcomes insufficient electronic or ionic conductivities of lithiated Si and Sn individuals. In addition, using SWCNT instead of ordinary polymer binders can improve electrode integrity and preserve electrical connections during cycling. When paired with a LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> (NCM811) cathode (a mass loading of 11.3 mg cm<sup>–2</sup>), the Si–Sn–SWCNT||NCM811 full cell shows stable cycling for more than 200 cycles at 0.5C with a capacity retention of 85.9%. Even at a high NCM811 loading of 36.4 mg cm<sup>–2</sup>, the full cell exhibits a considerable capacity retention of 85.0% (50 cycles, 0.1C) and a maximum areal capacity of 5.8 mAh cm<sup>–2</sup>. This work provides an industry-compatible method to produce high-performance alloy anodes for ASSLBs.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":\"7 19\",\"pages\":\"8658–8668 8658–8668\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaem.4c01615\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c01615","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

采用硫化物电解质和高容量合金阳极的全固态锂电池(ASSLBs)是实现高安全性和高能量密度的最有前途的技术之一。在此,我们展示了一种浆料涂层片状电极,它由 99.8 wt % 硅-锰混合活性材料和 0.2 wt % 单壁碳纳米管(SWCNT)粘合剂组成,可用作 ASSLB 中的优质阳极。与典型的复合粉末电极相比,片状硅-锰电极不含电解质和额外的碳添加剂,因此在电极层面具有更高的能量密度,但主要依赖于硅-锰活性材料内部的锂+扩散和电子传输。研究发现,锂化硅-锡混合物是一种出色的离子-电子混合导体,可以克服锂化硅和锡个体的电子或离子导电性能不足的问题。此外,使用 SWCNT 代替普通聚合物粘合剂可以提高电极的完整性,并在循环过程中保持电气连接。当与 LiNi0.8Co0.1Mn0.1O2 (NCM811) 阴极(质量负载为 11.3 mg cm-2)配对时,Si-Sn-SWCNT||NCM811 全电池在 0.5C 下稳定循环超过 200 次,容量保持率为 85.9%。即使在 36.4 mg cm-2 的高 NCM811 负载条件下,全电池的容量保持率也高达 85.0%(50 次循环,0.1C),最大等容量为 5.8 mAh cm-2。这项研究提供了一种与工业兼容的方法,可用于生产 ASSLB 的高性能合金阳极。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synergy of Si, Sn, and SWCNT Enables a Superior Mixed-Conductive Slurry-Coated Anode for All-Solid-State Lithium Batteries

All-solid-state lithium batteries (ASSLBs) with sulfide electrolytes and high-capacity alloy anodes are among the most promising technologies for achieving high safety and energy density. Herein, we demonstrate a slurry-coated sheet-type electrode consisting of a 99.8 wt % Si–Sn hybrid active material and a 0.2 wt % single-walled carbon nanotube (SWCNT) binder, which could be used as a superior anode in ASSLBs. Compared to the typical composite powder electrode, the sheet-type Si–Sn electrode is free of electrolytes and extra carbon additives, enabling higher energy density at the electrode level but dominantly depending on Li+ diffusion and electron transport within the Si–Sn active material. It is identified that the lithiated Si–Sn hybrid is an excellent mixed ion-electron conductor that overcomes insufficient electronic or ionic conductivities of lithiated Si and Sn individuals. In addition, using SWCNT instead of ordinary polymer binders can improve electrode integrity and preserve electrical connections during cycling. When paired with a LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode (a mass loading of 11.3 mg cm–2), the Si–Sn–SWCNT||NCM811 full cell shows stable cycling for more than 200 cycles at 0.5C with a capacity retention of 85.9%. Even at a high NCM811 loading of 36.4 mg cm–2, the full cell exhibits a considerable capacity retention of 85.0% (50 cycles, 0.1C) and a maximum areal capacity of 5.8 mAh cm–2. This work provides an industry-compatible method to produce high-performance alloy anodes for ASSLBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Employees' Reactions to a Citizen Incivility Climate: A Multilevel Multisource Study. A Longitudinal Dynamic Perspective on Quality in Journalism: Investigating the Long-Term Macro-Level Media Effect of Suicide Reporting on Suicide Rates Across a Century. Functional Concurrent Regression Mixture Models Using Spiked Ewens-Pitman Attraction Priors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1