{"title":"冻结过程中冻土未冻结含水量的定量和划分以及冻融循环的影响","authors":"Ran An, Haodong Gao, Chang Chen, Xianwei Zhang","doi":"10.1007/s10064-024-03954-w","DOIUrl":null,"url":null,"abstract":"<div><p>The unfrozen water content is crucial to soil's physical and mechanical properties. Soils on the Qinghai-Tibet Plateau are frequently subjected to freeze-thaw (F-T) cycles. The quantitative relationship between F-T effects and the unfrozen water content of soils requires further investigation. This study employs a nuclear magnetic resonance (NMR) scanner with a temperature-control module to measure the unfrozen water content of silty clay during multiple F-T cycles. The soil freezing characteristic curves (SFCC) of silty clay are derived from the <i>T</i><sub>2</sub> (transverse relaxation time) distribution curves based on NMR measurements. Two distinct <i>T</i><sub>2</sub> cutoff values are used to classify three types of water in soils: bound water, capillary water, and bulk water. The impact of F-T cycles on the evolution of unfrozen water content as temperatures decrease has been analyzed. The testing results indicate that the SFCC of silty clay can be segmented into three stages: super-cooling, fast-declining, and stable. As the number of F-T cycles increases, capillary water content decreases while bulk water content increases during the super-cooling stage. The damage coefficient, derived from pore volume measurements, increases sharply during the first four F-T cycles before stabilizing gradually. Additionally, there is a negative linear correlation between the damage coefficient and the initial capillary water content, and a positive linear correlation with the initial bulk water content. This study offers valuable insights for the quantitative analysis of unfrozen water content in seasonally frozen regions and serves as an essential guide for geotechnical construction projects in cold areas.</p></div>","PeriodicalId":500,"journal":{"name":"Bulletin of Engineering Geology and the Environment","volume":"83 11","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantification and division of unfrozen water content of frozen soils during freezing and the influence of freeze-thaw cycles\",\"authors\":\"Ran An, Haodong Gao, Chang Chen, Xianwei Zhang\",\"doi\":\"10.1007/s10064-024-03954-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The unfrozen water content is crucial to soil's physical and mechanical properties. Soils on the Qinghai-Tibet Plateau are frequently subjected to freeze-thaw (F-T) cycles. The quantitative relationship between F-T effects and the unfrozen water content of soils requires further investigation. This study employs a nuclear magnetic resonance (NMR) scanner with a temperature-control module to measure the unfrozen water content of silty clay during multiple F-T cycles. The soil freezing characteristic curves (SFCC) of silty clay are derived from the <i>T</i><sub>2</sub> (transverse relaxation time) distribution curves based on NMR measurements. Two distinct <i>T</i><sub>2</sub> cutoff values are used to classify three types of water in soils: bound water, capillary water, and bulk water. The impact of F-T cycles on the evolution of unfrozen water content as temperatures decrease has been analyzed. The testing results indicate that the SFCC of silty clay can be segmented into three stages: super-cooling, fast-declining, and stable. As the number of F-T cycles increases, capillary water content decreases while bulk water content increases during the super-cooling stage. The damage coefficient, derived from pore volume measurements, increases sharply during the first four F-T cycles before stabilizing gradually. Additionally, there is a negative linear correlation between the damage coefficient and the initial capillary water content, and a positive linear correlation with the initial bulk water content. This study offers valuable insights for the quantitative analysis of unfrozen water content in seasonally frozen regions and serves as an essential guide for geotechnical construction projects in cold areas.</p></div>\",\"PeriodicalId\":500,\"journal\":{\"name\":\"Bulletin of Engineering Geology and the Environment\",\"volume\":\"83 11\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Engineering Geology and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10064-024-03954-w\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Engineering Geology and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10064-024-03954-w","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Quantification and division of unfrozen water content of frozen soils during freezing and the influence of freeze-thaw cycles
The unfrozen water content is crucial to soil's physical and mechanical properties. Soils on the Qinghai-Tibet Plateau are frequently subjected to freeze-thaw (F-T) cycles. The quantitative relationship between F-T effects and the unfrozen water content of soils requires further investigation. This study employs a nuclear magnetic resonance (NMR) scanner with a temperature-control module to measure the unfrozen water content of silty clay during multiple F-T cycles. The soil freezing characteristic curves (SFCC) of silty clay are derived from the T2 (transverse relaxation time) distribution curves based on NMR measurements. Two distinct T2 cutoff values are used to classify three types of water in soils: bound water, capillary water, and bulk water. The impact of F-T cycles on the evolution of unfrozen water content as temperatures decrease has been analyzed. The testing results indicate that the SFCC of silty clay can be segmented into three stages: super-cooling, fast-declining, and stable. As the number of F-T cycles increases, capillary water content decreases while bulk water content increases during the super-cooling stage. The damage coefficient, derived from pore volume measurements, increases sharply during the first four F-T cycles before stabilizing gradually. Additionally, there is a negative linear correlation between the damage coefficient and the initial capillary water content, and a positive linear correlation with the initial bulk water content. This study offers valuable insights for the quantitative analysis of unfrozen water content in seasonally frozen regions and serves as an essential guide for geotechnical construction projects in cold areas.
期刊介绍:
Engineering geology is defined in the statutes of the IAEG as the science devoted to the investigation, study and solution of engineering and environmental problems which may arise as the result of the interaction between geology and the works or activities of man, as well as of the prediction of and development of measures for the prevention or remediation of geological hazards. Engineering geology embraces:
• the applications/implications of the geomorphology, structural geology, and hydrogeological conditions of geological formations;
• the characterisation of the mineralogical, physico-geomechanical, chemical and hydraulic properties of all earth materials involved in construction, resource recovery and environmental change;
• the assessment of the mechanical and hydrological behaviour of soil and rock masses;
• the prediction of changes to the above properties with time;
• the determination of the parameters to be considered in the stability analysis of engineering works and earth masses.