Meysam Motahari, Abbas Sotoodehnia, Bijan Nazari, Mohamadreza Yazdani
{"title":"利用系统动力学方法开发水资源利用模型和优化水稻基因型模式","authors":"Meysam Motahari, Abbas Sotoodehnia, Bijan Nazari, Mohamadreza Yazdani","doi":"10.1007/s13201-024-02295-z","DOIUrl":null,"url":null,"abstract":"<div><p>The system dynamics approach was conducted to optimize genotype patterns in various climatic and water availability scenarios, to address the water productivity improvement of the Sefidrood irrigation network. The studied cropping pattern scenarios were SD1 (the continuation of current trends), SD2 (the reduction in the cultivated area), SD3 (replacing modified crops on an annual basis), and SD4 (increasing the annual cultivated area of Hashemi type rice). Moreover, the impacts of irrigation efficiency improvements and water resources management strategies on the physical and economic water productivity indices were studied. The results indicated that the SD3 scenario has the most positive impact on water productivity with 0.45 kg/m<sup>3</sup> increases. However, a questionnaire survey revealed that this scenario that belongs to the increase in the modified genotype area cannot be recommended due to cooking quality and low prices. The Hashemi genotype was the favorite rice among farmers and experts. Also, analyzing the irrigation efficiency improvement scenario showed that this strategy has a limited impact on the physical and economic water productivity. Increasing the capacity of local rainwater storage pools, Ab-bandans, and increasing the drainage water reuse had the highest water productivity in the condition of river water reduction and uncertain water availability.</p></div>","PeriodicalId":8374,"journal":{"name":"Applied Water Science","volume":"14 11","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13201-024-02295-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Development of a water resources utilization model and optimization of the patterns of rice genotypes with system dynamics approach\",\"authors\":\"Meysam Motahari, Abbas Sotoodehnia, Bijan Nazari, Mohamadreza Yazdani\",\"doi\":\"10.1007/s13201-024-02295-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The system dynamics approach was conducted to optimize genotype patterns in various climatic and water availability scenarios, to address the water productivity improvement of the Sefidrood irrigation network. The studied cropping pattern scenarios were SD1 (the continuation of current trends), SD2 (the reduction in the cultivated area), SD3 (replacing modified crops on an annual basis), and SD4 (increasing the annual cultivated area of Hashemi type rice). Moreover, the impacts of irrigation efficiency improvements and water resources management strategies on the physical and economic water productivity indices were studied. The results indicated that the SD3 scenario has the most positive impact on water productivity with 0.45 kg/m<sup>3</sup> increases. However, a questionnaire survey revealed that this scenario that belongs to the increase in the modified genotype area cannot be recommended due to cooking quality and low prices. The Hashemi genotype was the favorite rice among farmers and experts. Also, analyzing the irrigation efficiency improvement scenario showed that this strategy has a limited impact on the physical and economic water productivity. Increasing the capacity of local rainwater storage pools, Ab-bandans, and increasing the drainage water reuse had the highest water productivity in the condition of river water reduction and uncertain water availability.</p></div>\",\"PeriodicalId\":8374,\"journal\":{\"name\":\"Applied Water Science\",\"volume\":\"14 11\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s13201-024-02295-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Water Science\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13201-024-02295-z\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Water Science","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s13201-024-02295-z","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Development of a water resources utilization model and optimization of the patterns of rice genotypes with system dynamics approach
The system dynamics approach was conducted to optimize genotype patterns in various climatic and water availability scenarios, to address the water productivity improvement of the Sefidrood irrigation network. The studied cropping pattern scenarios were SD1 (the continuation of current trends), SD2 (the reduction in the cultivated area), SD3 (replacing modified crops on an annual basis), and SD4 (increasing the annual cultivated area of Hashemi type rice). Moreover, the impacts of irrigation efficiency improvements and water resources management strategies on the physical and economic water productivity indices were studied. The results indicated that the SD3 scenario has the most positive impact on water productivity with 0.45 kg/m3 increases. However, a questionnaire survey revealed that this scenario that belongs to the increase in the modified genotype area cannot be recommended due to cooking quality and low prices. The Hashemi genotype was the favorite rice among farmers and experts. Also, analyzing the irrigation efficiency improvement scenario showed that this strategy has a limited impact on the physical and economic water productivity. Increasing the capacity of local rainwater storage pools, Ab-bandans, and increasing the drainage water reuse had the highest water productivity in the condition of river water reduction and uncertain water availability.