{"title":"新鲜空气:哺乳动物肺部的定向非病毒体内基因校正","authors":"Jixin Liu, Dirk Grimm","doi":"10.1038/s41392-024-01994-y","DOIUrl":null,"url":null,"abstract":"<p>In a recent study published in <i>Science</i>,<sup>1</sup> Sun and colleagues showcase the power and potential of lung SORT LNPs, <i>i.e</i>., lipid nanoparticles that upon systemic delivery in mice specifically and efficiently target cells in the lung, most likely facilitated by their binding to plasma vitronectin and uptake via the vitronectin receptor. Most remarkably, when engineered to deliver a base editor, peripheral injection of SORT LNPs enabled highly efficient gene correction in lung stem cells, whole lung and trachea in a mouse model of cystic fibrosis, illustrating the enormous promise of this novel technology for human patients suffering from this devastating disease (Fig. 1).</p><figure><figcaption><b data-test=\"figure-caption-text\">Fig. 1</b></figcaption><picture><source srcset=\"//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41392-024-01994-y/MediaObjects/41392_2024_1994_Fig1_HTML.png?as=webp\" type=\"image/webp\"/><img alt=\"figure 1\" aria-describedby=\"Fig1\" height=\"144\" loading=\"lazy\" src=\"//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41392-024-01994-y/MediaObjects/41392_2024_1994_Fig1_HTML.png\" width=\"685\"/></picture><p>Lipid nanoparticles (LNPs) bind to vitronectin, which facilitates their uptake by vitronectin receptors (VtnR) in the lungs. The figure illustrates the efficiency of gene editing in various lung cell types and the restoration of CFTR function. This figure was created with BioRender</p><span>Full size image</span><svg aria-hidden=\"true\" focusable=\"false\" height=\"16\" role=\"img\" width=\"16\"><use xlink:href=\"#icon-eds-i-chevron-right-small\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"></use></svg></figure>","PeriodicalId":21766,"journal":{"name":"Signal Transduction and Targeted Therapy","volume":null,"pages":null},"PeriodicalIF":40.8000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A breath of fresh air: targeted non-viral in vivo gene correction in the mammalian lung\",\"authors\":\"Jixin Liu, Dirk Grimm\",\"doi\":\"10.1038/s41392-024-01994-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In a recent study published in <i>Science</i>,<sup>1</sup> Sun and colleagues showcase the power and potential of lung SORT LNPs, <i>i.e</i>., lipid nanoparticles that upon systemic delivery in mice specifically and efficiently target cells in the lung, most likely facilitated by their binding to plasma vitronectin and uptake via the vitronectin receptor. Most remarkably, when engineered to deliver a base editor, peripheral injection of SORT LNPs enabled highly efficient gene correction in lung stem cells, whole lung and trachea in a mouse model of cystic fibrosis, illustrating the enormous promise of this novel technology for human patients suffering from this devastating disease (Fig. 1).</p><figure><figcaption><b data-test=\\\"figure-caption-text\\\">Fig. 1</b></figcaption><picture><source srcset=\\\"//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41392-024-01994-y/MediaObjects/41392_2024_1994_Fig1_HTML.png?as=webp\\\" type=\\\"image/webp\\\"/><img alt=\\\"figure 1\\\" aria-describedby=\\\"Fig1\\\" height=\\\"144\\\" loading=\\\"lazy\\\" src=\\\"//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41392-024-01994-y/MediaObjects/41392_2024_1994_Fig1_HTML.png\\\" width=\\\"685\\\"/></picture><p>Lipid nanoparticles (LNPs) bind to vitronectin, which facilitates their uptake by vitronectin receptors (VtnR) in the lungs. The figure illustrates the efficiency of gene editing in various lung cell types and the restoration of CFTR function. This figure was created with BioRender</p><span>Full size image</span><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"16\\\" role=\\\"img\\\" width=\\\"16\\\"><use xlink:href=\\\"#icon-eds-i-chevron-right-small\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"></use></svg></figure>\",\"PeriodicalId\":21766,\"journal\":{\"name\":\"Signal Transduction and Targeted Therapy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":40.8000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Transduction and Targeted Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41392-024-01994-y\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Transduction and Targeted Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41392-024-01994-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
A breath of fresh air: targeted non-viral in vivo gene correction in the mammalian lung
In a recent study published in Science,1 Sun and colleagues showcase the power and potential of lung SORT LNPs, i.e., lipid nanoparticles that upon systemic delivery in mice specifically and efficiently target cells in the lung, most likely facilitated by their binding to plasma vitronectin and uptake via the vitronectin receptor. Most remarkably, when engineered to deliver a base editor, peripheral injection of SORT LNPs enabled highly efficient gene correction in lung stem cells, whole lung and trachea in a mouse model of cystic fibrosis, illustrating the enormous promise of this novel technology for human patients suffering from this devastating disease (Fig. 1).
期刊介绍:
Signal Transduction and Targeted Therapy is an open access journal that focuses on timely publication of cutting-edge discoveries and advancements in basic science and clinical research related to signal transduction and targeted therapy.
Scope: The journal covers research on major human diseases, including, but not limited to:
Cancer,Cardiovascular diseases,Autoimmune diseases,Nervous system diseases.