Han Li, Leitao Xu, Shuowen Bo, Yujie Wang, Han Xu, Chen Chen, Ruping Miao, Dawei Chen, Kefan Zhang, Qinghua Liu, Jingjun Shen, Huaiyu Shao, Jianfeng Jia, Shuangyin Wang
{"title":"利用配体工程在分子催化剂上实现电催化尿素合成","authors":"Han Li, Leitao Xu, Shuowen Bo, Yujie Wang, Han Xu, Chen Chen, Ruping Miao, Dawei Chen, Kefan Zhang, Qinghua Liu, Jingjun Shen, Huaiyu Shao, Jianfeng Jia, Shuangyin Wang","doi":"10.1038/s41467-024-52832-2","DOIUrl":null,"url":null,"abstract":"<p>Electrocatalytic C-N coupling from carbon dioxide and nitrate provides a sustainable alternative to the conventional energy-intensive urea synthetic protocol, enabling wastes upgrading and value-added products synthesis. The design of efficient and stable electrocatalysts is vital to promote the development of electrocatalytic urea synthesis. In this work, copper phthalocyanine (CuPc) is adopted as a modeling catalyst toward urea synthesis owing to its accurate and adjustable active configurations. Combining experimental and theoretical studies, it can be observed that the intramolecular Cu-N coordination can be strengthened with optimization in electronic structure by amino substitution (CuPc-Amino) and the electrochemically induced demetallation is efficiently suppressed, serving as the origination of its excellent activity and stability. Compared to that of CuPc (the maximum urea yield rate of 39.9 ± 1.9 mmol h<sup>−1</sup> g<sup>−1</sup> with 67.4% of decay in 10 test cycles), a high rate of 103.1 ± 5.3 mmol h<sup>−1</sup> g<sup>−1</sup> and remarkable catalytic durability have been achieved on CuPc-Amino. Isotope-labelling operando electrochemical spectroscopy measurements are performed to disclose reaction mechanisms and validate the C-N coupling processes. This work proposes a unique scheme for the rational design of molecular electrocatalysts for urea synthesis.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"2 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ligand engineering towards electrocatalytic urea synthesis on a molecular catalyst\",\"authors\":\"Han Li, Leitao Xu, Shuowen Bo, Yujie Wang, Han Xu, Chen Chen, Ruping Miao, Dawei Chen, Kefan Zhang, Qinghua Liu, Jingjun Shen, Huaiyu Shao, Jianfeng Jia, Shuangyin Wang\",\"doi\":\"10.1038/s41467-024-52832-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Electrocatalytic C-N coupling from carbon dioxide and nitrate provides a sustainable alternative to the conventional energy-intensive urea synthetic protocol, enabling wastes upgrading and value-added products synthesis. The design of efficient and stable electrocatalysts is vital to promote the development of electrocatalytic urea synthesis. In this work, copper phthalocyanine (CuPc) is adopted as a modeling catalyst toward urea synthesis owing to its accurate and adjustable active configurations. Combining experimental and theoretical studies, it can be observed that the intramolecular Cu-N coordination can be strengthened with optimization in electronic structure by amino substitution (CuPc-Amino) and the electrochemically induced demetallation is efficiently suppressed, serving as the origination of its excellent activity and stability. Compared to that of CuPc (the maximum urea yield rate of 39.9 ± 1.9 mmol h<sup>−1</sup> g<sup>−1</sup> with 67.4% of decay in 10 test cycles), a high rate of 103.1 ± 5.3 mmol h<sup>−1</sup> g<sup>−1</sup> and remarkable catalytic durability have been achieved on CuPc-Amino. Isotope-labelling operando electrochemical spectroscopy measurements are performed to disclose reaction mechanisms and validate the C-N coupling processes. This work proposes a unique scheme for the rational design of molecular electrocatalysts for urea synthesis.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-52832-2\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-52832-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Ligand engineering towards electrocatalytic urea synthesis on a molecular catalyst
Electrocatalytic C-N coupling from carbon dioxide and nitrate provides a sustainable alternative to the conventional energy-intensive urea synthetic protocol, enabling wastes upgrading and value-added products synthesis. The design of efficient and stable electrocatalysts is vital to promote the development of electrocatalytic urea synthesis. In this work, copper phthalocyanine (CuPc) is adopted as a modeling catalyst toward urea synthesis owing to its accurate and adjustable active configurations. Combining experimental and theoretical studies, it can be observed that the intramolecular Cu-N coordination can be strengthened with optimization in electronic structure by amino substitution (CuPc-Amino) and the electrochemically induced demetallation is efficiently suppressed, serving as the origination of its excellent activity and stability. Compared to that of CuPc (the maximum urea yield rate of 39.9 ± 1.9 mmol h−1 g−1 with 67.4% of decay in 10 test cycles), a high rate of 103.1 ± 5.3 mmol h−1 g−1 and remarkable catalytic durability have been achieved on CuPc-Amino. Isotope-labelling operando electrochemical spectroscopy measurements are performed to disclose reaction mechanisms and validate the C-N coupling processes. This work proposes a unique scheme for the rational design of molecular electrocatalysts for urea synthesis.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.