p 自旋模型的单层数字化-逆绝热量子优化

IF 5.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Quantum Science and Technology Pub Date : 2024-10-13 DOI:10.1088/2058-9565/ad7880
Huijie Guan, Fei Zhou, Francisco Albarrán-Arriagada, Xi Chen, Enrique Solano, Narendra N Hegade and He-Liang Huang
{"title":"p 自旋模型的单层数字化-逆绝热量子优化","authors":"Huijie Guan, Fei Zhou, Francisco Albarrán-Arriagada, Xi Chen, Enrique Solano, Narendra N Hegade and He-Liang Huang","doi":"10.1088/2058-9565/ad7880","DOIUrl":null,"url":null,"abstract":"Quantum computing holds the potential for quantum advantage in optimization problems, which requires advances in quantum algorithms and hardware specifications. Adiabatic quantum optimization is conceptually a valid solution that suffers from limited hardware coherence times. In this sense, counterdiabatic quantum protocols provide a shortcut to this process, steering the system along its ground state with fast-changing Hamiltonian. In this work, we take full advantage of a digitized-counterdiabatic quantum optimization algorithm to find an optimal solution of the p-spin model up to four-local interactions. We choose a suitable scheduling function and initial Hamiltonian such that a single-layer quantum circuit suffices to produce a good ground-state overlap. By further optimizing parameters using variational methods, we solve with unit accuracy two-spin, three-spin, and four-spin problems for 100%, 93%, and 83% of instances, respectively. As a particular case of the latter, we also solve factorization problems involving 5, 9, and 12 qubits. Due to the low computational overhead, our compact approach may become a valuable tool towards quantum advantage in the NISQ era.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"229 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-layer digitized-counterdiabatic quantum optimization for p-spin models\",\"authors\":\"Huijie Guan, Fei Zhou, Francisco Albarrán-Arriagada, Xi Chen, Enrique Solano, Narendra N Hegade and He-Liang Huang\",\"doi\":\"10.1088/2058-9565/ad7880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum computing holds the potential for quantum advantage in optimization problems, which requires advances in quantum algorithms and hardware specifications. Adiabatic quantum optimization is conceptually a valid solution that suffers from limited hardware coherence times. In this sense, counterdiabatic quantum protocols provide a shortcut to this process, steering the system along its ground state with fast-changing Hamiltonian. In this work, we take full advantage of a digitized-counterdiabatic quantum optimization algorithm to find an optimal solution of the p-spin model up to four-local interactions. We choose a suitable scheduling function and initial Hamiltonian such that a single-layer quantum circuit suffices to produce a good ground-state overlap. By further optimizing parameters using variational methods, we solve with unit accuracy two-spin, three-spin, and four-spin problems for 100%, 93%, and 83% of instances, respectively. As a particular case of the latter, we also solve factorization problems involving 5, 9, and 12 qubits. Due to the low computational overhead, our compact approach may become a valuable tool towards quantum advantage in the NISQ era.\",\"PeriodicalId\":20821,\"journal\":{\"name\":\"Quantum Science and Technology\",\"volume\":\"229 1\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Science and Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2058-9565/ad7880\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/ad7880","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

量子计算为优化问题带来了量子优势,这需要量子算法和硬件规格的进步。从概念上讲,绝热量子优化是一种有效的解决方案,但却受到硬件相干时间的限制。从这个意义上说,反绝热量子协议为这一过程提供了一条捷径,它能引导系统沿着具有快速变化哈密顿的基态运行。在这项工作中,我们充分利用数字化的逆绝热量子优化算法,找到了 p-自旋模型的最优解,最高可达四局部相互作用。我们选择了合适的调度函数和初始哈密顿,这样单层量子电路就足以产生良好的基态重叠。通过使用变分法进一步优化参数,我们分别以单位精度解决了100%、93% 和83% 的双自旋、三自旋和四自旋问题。作为后者的一个特殊案例,我们还解决了涉及 5、9 和 12 量子位的因式分解问题。由于计算开销低,我们的紧凑型方法可能成为在 NISQ 时代实现量子优势的重要工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Single-layer digitized-counterdiabatic quantum optimization for p-spin models
Quantum computing holds the potential for quantum advantage in optimization problems, which requires advances in quantum algorithms and hardware specifications. Adiabatic quantum optimization is conceptually a valid solution that suffers from limited hardware coherence times. In this sense, counterdiabatic quantum protocols provide a shortcut to this process, steering the system along its ground state with fast-changing Hamiltonian. In this work, we take full advantage of a digitized-counterdiabatic quantum optimization algorithm to find an optimal solution of the p-spin model up to four-local interactions. We choose a suitable scheduling function and initial Hamiltonian such that a single-layer quantum circuit suffices to produce a good ground-state overlap. By further optimizing parameters using variational methods, we solve with unit accuracy two-spin, three-spin, and four-spin problems for 100%, 93%, and 83% of instances, respectively. As a particular case of the latter, we also solve factorization problems involving 5, 9, and 12 qubits. Due to the low computational overhead, our compact approach may become a valuable tool towards quantum advantage in the NISQ era.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum Science and Technology
Quantum Science and Technology Materials Science-Materials Science (miscellaneous)
CiteScore
11.20
自引率
3.00%
发文量
133
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.
期刊最新文献
Atom interferometer as a freely falling clock for time-dilation measurements Learning to classify quantum phases of matter with a few measurements Conditions for a quadratic quantum speedup in nonlinear transforms with applications to energy contract pricing Automated quantum system modeling with machine learning Challenging excited states from adaptive quantum eigensolvers: subspace expansions vs. state-averaged strategies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1