Huijie Guan, Fei Zhou, Francisco Albarrán-Arriagada, Xi Chen, Enrique Solano, Narendra N Hegade and He-Liang Huang
{"title":"p 自旋模型的单层数字化-逆绝热量子优化","authors":"Huijie Guan, Fei Zhou, Francisco Albarrán-Arriagada, Xi Chen, Enrique Solano, Narendra N Hegade and He-Liang Huang","doi":"10.1088/2058-9565/ad7880","DOIUrl":null,"url":null,"abstract":"Quantum computing holds the potential for quantum advantage in optimization problems, which requires advances in quantum algorithms and hardware specifications. Adiabatic quantum optimization is conceptually a valid solution that suffers from limited hardware coherence times. In this sense, counterdiabatic quantum protocols provide a shortcut to this process, steering the system along its ground state with fast-changing Hamiltonian. In this work, we take full advantage of a digitized-counterdiabatic quantum optimization algorithm to find an optimal solution of the p-spin model up to four-local interactions. We choose a suitable scheduling function and initial Hamiltonian such that a single-layer quantum circuit suffices to produce a good ground-state overlap. By further optimizing parameters using variational methods, we solve with unit accuracy two-spin, three-spin, and four-spin problems for 100%, 93%, and 83% of instances, respectively. As a particular case of the latter, we also solve factorization problems involving 5, 9, and 12 qubits. Due to the low computational overhead, our compact approach may become a valuable tool towards quantum advantage in the NISQ era.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"229 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-layer digitized-counterdiabatic quantum optimization for p-spin models\",\"authors\":\"Huijie Guan, Fei Zhou, Francisco Albarrán-Arriagada, Xi Chen, Enrique Solano, Narendra N Hegade and He-Liang Huang\",\"doi\":\"10.1088/2058-9565/ad7880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum computing holds the potential for quantum advantage in optimization problems, which requires advances in quantum algorithms and hardware specifications. Adiabatic quantum optimization is conceptually a valid solution that suffers from limited hardware coherence times. In this sense, counterdiabatic quantum protocols provide a shortcut to this process, steering the system along its ground state with fast-changing Hamiltonian. In this work, we take full advantage of a digitized-counterdiabatic quantum optimization algorithm to find an optimal solution of the p-spin model up to four-local interactions. We choose a suitable scheduling function and initial Hamiltonian such that a single-layer quantum circuit suffices to produce a good ground-state overlap. By further optimizing parameters using variational methods, we solve with unit accuracy two-spin, three-spin, and four-spin problems for 100%, 93%, and 83% of instances, respectively. As a particular case of the latter, we also solve factorization problems involving 5, 9, and 12 qubits. Due to the low computational overhead, our compact approach may become a valuable tool towards quantum advantage in the NISQ era.\",\"PeriodicalId\":20821,\"journal\":{\"name\":\"Quantum Science and Technology\",\"volume\":\"229 1\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Science and Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2058-9565/ad7880\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/ad7880","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Single-layer digitized-counterdiabatic quantum optimization for p-spin models
Quantum computing holds the potential for quantum advantage in optimization problems, which requires advances in quantum algorithms and hardware specifications. Adiabatic quantum optimization is conceptually a valid solution that suffers from limited hardware coherence times. In this sense, counterdiabatic quantum protocols provide a shortcut to this process, steering the system along its ground state with fast-changing Hamiltonian. In this work, we take full advantage of a digitized-counterdiabatic quantum optimization algorithm to find an optimal solution of the p-spin model up to four-local interactions. We choose a suitable scheduling function and initial Hamiltonian such that a single-layer quantum circuit suffices to produce a good ground-state overlap. By further optimizing parameters using variational methods, we solve with unit accuracy two-spin, three-spin, and four-spin problems for 100%, 93%, and 83% of instances, respectively. As a particular case of the latter, we also solve factorization problems involving 5, 9, and 12 qubits. Due to the low computational overhead, our compact approach may become a valuable tool towards quantum advantage in the NISQ era.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.