{"title":"在碳基质中植入 MOFs 衍生的硒化铜纳米粒子以实现宽带电磁波吸收","authors":"Shengtao Gao, Chuanlei Zhu, Yuanchun Zhang","doi":"10.1016/j.ceramint.2024.10.129","DOIUrl":null,"url":null,"abstract":"Selenide-based functional composites materials demonstrated tunable dielectric properties and heterogeneous interface design, which has been widely studied in electromagnetic (EM) wave absorption field. Herein, Metal-organic frameworks (MOFs) derived carbon coating copper selenide (Cu<sub>2-X</sub>Se@C) composites were successfully fabricated by using the Cu-MOFs as precursor. After reacting with the gaseous Se in the selenization annealing process, the metal host was converted into the Cu<sub>2-X</sub>Se nanoparticles, where embodied in the carbon matrix transformed from the organic linker. Based on the tunning dielectric property and building heterogeneous interface, MOFs-derived Cu<sub>2-X</sub>Se@C composites displayed outstanding EM wave absorption performance. Though the conduction loss, interfacial and dipole polarization behaviors, the minimum reflection loss (<em>RL</em><sub>min</sub>) value of Cu<sub>2-X</sub>Se@C-600 composites reached to -74.3 dB at 11.7 GHz when the thickness is 2.0 mm. The efficient absorption bandwidth (EAB) can be regulated via controlling the applied thickness. When the thickness is 2.3 mm, above-mentioned Cu<sub>2-X</sub>Se@C-600 got the broadest absorption performance with the EAB of 5.5 GHz from the 7.7 to 13.2 GHz, covering the whole X-band. Therefore, MOFs-derived selenide-based composites shed a new design strategy for constructing broadband EM wave absorption, especially in radar stealth applications.","PeriodicalId":48790,"journal":{"name":"The Lancet Diabetes & Endocrinology","volume":"58 1","pages":""},"PeriodicalIF":44.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MOFs-Derived Copper Selenides Nanoparticles Implanted in Carbon Matrix for Broadband Electromagnetic Wave Absorption\",\"authors\":\"Shengtao Gao, Chuanlei Zhu, Yuanchun Zhang\",\"doi\":\"10.1016/j.ceramint.2024.10.129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Selenide-based functional composites materials demonstrated tunable dielectric properties and heterogeneous interface design, which has been widely studied in electromagnetic (EM) wave absorption field. Herein, Metal-organic frameworks (MOFs) derived carbon coating copper selenide (Cu<sub>2-X</sub>Se@C) composites were successfully fabricated by using the Cu-MOFs as precursor. After reacting with the gaseous Se in the selenization annealing process, the metal host was converted into the Cu<sub>2-X</sub>Se nanoparticles, where embodied in the carbon matrix transformed from the organic linker. Based on the tunning dielectric property and building heterogeneous interface, MOFs-derived Cu<sub>2-X</sub>Se@C composites displayed outstanding EM wave absorption performance. Though the conduction loss, interfacial and dipole polarization behaviors, the minimum reflection loss (<em>RL</em><sub>min</sub>) value of Cu<sub>2-X</sub>Se@C-600 composites reached to -74.3 dB at 11.7 GHz when the thickness is 2.0 mm. The efficient absorption bandwidth (EAB) can be regulated via controlling the applied thickness. When the thickness is 2.3 mm, above-mentioned Cu<sub>2-X</sub>Se@C-600 got the broadest absorption performance with the EAB of 5.5 GHz from the 7.7 to 13.2 GHz, covering the whole X-band. Therefore, MOFs-derived selenide-based composites shed a new design strategy for constructing broadband EM wave absorption, especially in radar stealth applications.\",\"PeriodicalId\":48790,\"journal\":{\"name\":\"The Lancet Diabetes & Endocrinology\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":44.0000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Lancet Diabetes & Endocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ceramint.2024.10.129\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Lancet Diabetes & Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ceramint.2024.10.129","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
MOFs-Derived Copper Selenides Nanoparticles Implanted in Carbon Matrix for Broadband Electromagnetic Wave Absorption
Selenide-based functional composites materials demonstrated tunable dielectric properties and heterogeneous interface design, which has been widely studied in electromagnetic (EM) wave absorption field. Herein, Metal-organic frameworks (MOFs) derived carbon coating copper selenide (Cu2-XSe@C) composites were successfully fabricated by using the Cu-MOFs as precursor. After reacting with the gaseous Se in the selenization annealing process, the metal host was converted into the Cu2-XSe nanoparticles, where embodied in the carbon matrix transformed from the organic linker. Based on the tunning dielectric property and building heterogeneous interface, MOFs-derived Cu2-XSe@C composites displayed outstanding EM wave absorption performance. Though the conduction loss, interfacial and dipole polarization behaviors, the minimum reflection loss (RLmin) value of Cu2-XSe@C-600 composites reached to -74.3 dB at 11.7 GHz when the thickness is 2.0 mm. The efficient absorption bandwidth (EAB) can be regulated via controlling the applied thickness. When the thickness is 2.3 mm, above-mentioned Cu2-XSe@C-600 got the broadest absorption performance with the EAB of 5.5 GHz from the 7.7 to 13.2 GHz, covering the whole X-band. Therefore, MOFs-derived selenide-based composites shed a new design strategy for constructing broadband EM wave absorption, especially in radar stealth applications.
期刊介绍:
The Lancet Diabetes & Endocrinology, an independent journal with a global perspective and strong clinical focus, features original clinical research, expert reviews, news, and opinion pieces in each monthly issue. Covering topics like diabetes, obesity, nutrition, and more, the journal provides insights into clinical advances and practice-changing research worldwide. It welcomes original research advocating change or shedding light on clinical practice, as well as informative reviews on related topics, especially those with global health importance and relevance to low-income and middle-income countries. The journal publishes various content types, including Articles, Reviews, Comments, Correspondence, Health Policy, and Personal Views, along with Series and Commissions aiming to drive positive change in clinical practice and health policy in diabetes and endocrinology.