牙科汞合金修复应用中汞-钙和汞-锶二元体系相图的热力学研究

IF 1.9 3区 材料科学 Q4 CHEMISTRY, PHYSICAL Calphad-computer Coupling of Phase Diagrams and Thermochemistry Pub Date : 2024-10-13 DOI:10.1016/j.calphad.2024.102755
{"title":"牙科汞合金修复应用中汞-钙和汞-锶二元体系相图的热力学研究","authors":"","doi":"10.1016/j.calphad.2024.102755","DOIUrl":null,"url":null,"abstract":"<div><div>Dental amalgam, known for its biocompatibility and ductility, is widely used in restorative materials. In dental crown restorations, studying the interactions between amalgam fillings and crown tissues, particularly the roles of calcium (Ca) and strontium (Sr), is essential for improving function stability and biocompatibility. This study conducts critical literature evaluation and thermodynamic optimization of binary systems involving mercury (Hg) with Ca and Sr, focusing specifically on their suitability for dental amalgam restoration. Using first-principles calculations (FPC), the enthalpies of formation for compounds within the Hg-Ca and Hg-Sr binary systems were calculated in this work. Thermodynamic modeling of the liquid solution employed the modified quasichemical model in the pair approximation (MQM), uncovering significant short-range ordering. Conversely, solid phases were modeled using the compound energy formalism (CEF). The incorporation of FPC proves to be a valuable and effective method, providing essential insights to complement the calculation of phase diagrams (CALPHAD) modeling approach. Ultimately, this research significantly enhances our understanding of the thermodynamic characteristics of Hg-X alloys, with notable implications for their potential application in dental amalgam restoration.</div></div>","PeriodicalId":9436,"journal":{"name":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermodynamic study on the phase diagram of the Hg-Ca and Hg-Sr binary systems for dental amalgam restoration application\",\"authors\":\"\",\"doi\":\"10.1016/j.calphad.2024.102755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Dental amalgam, known for its biocompatibility and ductility, is widely used in restorative materials. In dental crown restorations, studying the interactions between amalgam fillings and crown tissues, particularly the roles of calcium (Ca) and strontium (Sr), is essential for improving function stability and biocompatibility. This study conducts critical literature evaluation and thermodynamic optimization of binary systems involving mercury (Hg) with Ca and Sr, focusing specifically on their suitability for dental amalgam restoration. Using first-principles calculations (FPC), the enthalpies of formation for compounds within the Hg-Ca and Hg-Sr binary systems were calculated in this work. Thermodynamic modeling of the liquid solution employed the modified quasichemical model in the pair approximation (MQM), uncovering significant short-range ordering. Conversely, solid phases were modeled using the compound energy formalism (CEF). The incorporation of FPC proves to be a valuable and effective method, providing essential insights to complement the calculation of phase diagrams (CALPHAD) modeling approach. Ultimately, this research significantly enhances our understanding of the thermodynamic characteristics of Hg-X alloys, with notable implications for their potential application in dental amalgam restoration.</div></div>\",\"PeriodicalId\":9436,\"journal\":{\"name\":\"Calphad-computer Coupling of Phase Diagrams and Thermochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Calphad-computer Coupling of Phase Diagrams and Thermochemistry\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S036459162400097X\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S036459162400097X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

牙科汞合金以其生物相容性和延展性著称,被广泛应用于修复材料中。在牙冠修复中,研究汞合金填料与牙冠组织之间的相互作用,特别是钙(Ca)和锶(Sr)的作用,对于提高功能稳定性和生物相容性至关重要。本研究对涉及汞(Hg)与钙(Ca)和锶(Sr)的二元体系进行了重要的文献评估和热力学优化,特别关注它们在牙科汞合金修复中的适用性。通过第一原理计算(FPC),本研究计算了汞-钙和汞-锶二元体系中化合物的形成焓。液态溶液的热力学建模采用了成对近似的修正准化学模型(MQM),发现了显著的短程有序性。相反,固相模型则采用了复能形式主义(CEF)。事实证明,结合 FPC 是一种宝贵而有效的方法,为相图计算 (CALPHAD) 建模方法提供了重要的补充。最终,这项研究极大地增强了我们对 Hg-X 合金热力学特性的理解,并对其在牙科汞合金修复中的潜在应用产生了显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermodynamic study on the phase diagram of the Hg-Ca and Hg-Sr binary systems for dental amalgam restoration application
Dental amalgam, known for its biocompatibility and ductility, is widely used in restorative materials. In dental crown restorations, studying the interactions between amalgam fillings and crown tissues, particularly the roles of calcium (Ca) and strontium (Sr), is essential for improving function stability and biocompatibility. This study conducts critical literature evaluation and thermodynamic optimization of binary systems involving mercury (Hg) with Ca and Sr, focusing specifically on their suitability for dental amalgam restoration. Using first-principles calculations (FPC), the enthalpies of formation for compounds within the Hg-Ca and Hg-Sr binary systems were calculated in this work. Thermodynamic modeling of the liquid solution employed the modified quasichemical model in the pair approximation (MQM), uncovering significant short-range ordering. Conversely, solid phases were modeled using the compound energy formalism (CEF). The incorporation of FPC proves to be a valuable and effective method, providing essential insights to complement the calculation of phase diagrams (CALPHAD) modeling approach. Ultimately, this research significantly enhances our understanding of the thermodynamic characteristics of Hg-X alloys, with notable implications for their potential application in dental amalgam restoration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
16.70%
发文量
94
审稿时长
2.5 months
期刊介绍: The design of industrial processes requires reliable thermodynamic data. CALPHAD (Computer Coupling of Phase Diagrams and Thermochemistry) aims to promote computational thermodynamics through development of models to represent thermodynamic properties for various phases which permit prediction of properties of multicomponent systems from those of binary and ternary subsystems, critical assessment of data and their incorporation into self-consistent databases, development of software to optimize and derive thermodynamic parameters and the development and use of databanks for calculations to improve understanding of various industrial and technological processes. This work is disseminated through the CALPHAD journal and its annual conference.
期刊最新文献
Catastrophe theory and thermodynamic instability to predict congruent melting temperature of crystals A new model for precipitation kinetics considering diffusion within the precipitates Study on the γ + γ′ microstructure characterization of the Co–V–Zr system based on CALPHAD method Critical assessment of the Si-P system: P solubility in the Si-rich region and refining by phosphorus distillation Assessment of thermal conductivity for FCC Al-X (X=Zn, Mg) and Al-Zn-Mg alloys: Experiments and modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1