计算约束优化的欧氏距离和最大似然回缩图

IF 0.4 4区 计算机科学 Q4 MATHEMATICS Computational Geometry-Theory and Applications Pub Date : 2024-10-03 DOI:10.1016/j.comgeo.2024.102147
Alexander Heaton , Matthias Himmelmann
{"title":"计算约束优化的欧氏距离和最大似然回缩图","authors":"Alexander Heaton ,&nbsp;Matthias Himmelmann","doi":"10.1016/j.comgeo.2024.102147","DOIUrl":null,"url":null,"abstract":"<div><div>Riemannian optimization uses local methods to solve optimization problems whose constraint set is a smooth manifold. A linear step along some descent direction usually leaves the constraints, and hence <em>retraction maps</em> are used to approximate the exponential map and return to the manifold. For many common matrix manifolds, retraction maps are available, with more or less explicit formulas. For implicitly-defined manifolds, suitable retraction maps are difficult to compute. We therefore develop an algorithm which uses homotopy continuation to compute the Euclidean distance retraction for any implicitly-defined submanifold of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, and prove convergence results.</div><div>We also consider statistical models as Riemannian submanifolds of the probability simplex with the Fisher metric. Replacing Euclidean distance with maximum likelihood results in a map which we prove is a retraction. In fact, we prove the retraction is second-order; with the Levi-Civita connection associated to the Fisher metric, it approximates geodesics to second-order accuracy.</div></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computing Euclidean distance and maximum likelihood retraction maps for constrained optimization\",\"authors\":\"Alexander Heaton ,&nbsp;Matthias Himmelmann\",\"doi\":\"10.1016/j.comgeo.2024.102147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Riemannian optimization uses local methods to solve optimization problems whose constraint set is a smooth manifold. A linear step along some descent direction usually leaves the constraints, and hence <em>retraction maps</em> are used to approximate the exponential map and return to the manifold. For many common matrix manifolds, retraction maps are available, with more or less explicit formulas. For implicitly-defined manifolds, suitable retraction maps are difficult to compute. We therefore develop an algorithm which uses homotopy continuation to compute the Euclidean distance retraction for any implicitly-defined submanifold of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, and prove convergence results.</div><div>We also consider statistical models as Riemannian submanifolds of the probability simplex with the Fisher metric. Replacing Euclidean distance with maximum likelihood results in a map which we prove is a retraction. In fact, we prove the retraction is second-order; with the Levi-Civita connection associated to the Fisher metric, it approximates geodesics to second-order accuracy.</div></div>\",\"PeriodicalId\":51001,\"journal\":{\"name\":\"Computational Geometry-Theory and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Geometry-Theory and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925772124000695\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772124000695","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

黎曼优化使用局部方法来解决约束集为光滑流形的优化问题。沿着某个下降方向的线性步骤通常会离开约束条件,因此回缩图被用来近似指数图并返回流形。对于许多常见的矩阵流形,回缩映射或多或少都有明确的公式。对于隐式定义的流形,合适的缩回图很难计算。因此,我们开发了一种算法,利用同调延续来计算 Rn 的任何隐含定义子流形的欧氏距离回缩,并证明了收敛结果。我们还将统计模型视为具有费雪度量的概率单纯形的黎曼子流形。用最大似然法代替欧几里得距离会产生一个映射,我们证明了这个映射是回缩的。事实上,我们证明了回缩是二阶的;利用与费雪公设相关的列维-奇维塔连接,它可以以二阶精度逼近大地线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computing Euclidean distance and maximum likelihood retraction maps for constrained optimization
Riemannian optimization uses local methods to solve optimization problems whose constraint set is a smooth manifold. A linear step along some descent direction usually leaves the constraints, and hence retraction maps are used to approximate the exponential map and return to the manifold. For many common matrix manifolds, retraction maps are available, with more or less explicit formulas. For implicitly-defined manifolds, suitable retraction maps are difficult to compute. We therefore develop an algorithm which uses homotopy continuation to compute the Euclidean distance retraction for any implicitly-defined submanifold of Rn, and prove convergence results.
We also consider statistical models as Riemannian submanifolds of the probability simplex with the Fisher metric. Replacing Euclidean distance with maximum likelihood results in a map which we prove is a retraction. In fact, we prove the retraction is second-order; with the Levi-Civita connection associated to the Fisher metric, it approximates geodesics to second-order accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
43
审稿时长
>12 weeks
期刊介绍: Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems. Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.
期刊最新文献
On the orthogonal Grünbaum partition problem in dimension three Computing Euclidean distance and maximum likelihood retraction maps for constrained optimization Editorial Board Largest unit rectangles inscribed in a convex polygon Packing unequal disks in the Euclidean plane
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1