{"title":"利用机器学习分类器对干燥溶菌酶-葡萄糖液滴进行模式识别","authors":"Anusuya Pal , Miho Yanagisawa","doi":"10.1016/j.physa.2024.130141","DOIUrl":null,"url":null,"abstract":"<div><div>Out-of-equilibrium processes, such as sessile droplet drying, often result in distinctive macroscopic residual patterns in systems containing molecules, proteins, and colloids. Protein–glucose mixtures are particularly effective models for studying the behavior of complex fluids containing biomolecules. This study investigates the drying patterns of lysozyme droplets with varying initial glucose concentrations. Without glucose, the crack patterns are chaotic and dispersed throughout the droplet. Interestingly, cracks predominantly form around the droplet edges at intermediate glucose concentrations, while the deposits become uniform and crack-free at high glucose concentrations. To understand and classify the unique patterns related to the initial compositional changes, we developed an automated pattern recognition pipeline. We used two methods for analyzing images captured throughout the drying process. The first method involved extracting statistical textural parameters from the images as quantitative features for machine learning classifiers. The second method utilized a neural network-based classifier to directly classify the images, achieving an accuracy of 97%. The results demonstrate the effectiveness of using images from the entire drying process, not just the final images, for pattern classification. This approach may be useful in gaining a fundamental understanding of unique crack pattern that emerge when glucose is added to a protein solution.</div></div>","PeriodicalId":20152,"journal":{"name":"Physica A: Statistical Mechanics and its Applications","volume":"654 ","pages":"Article 130141"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pattern recognition of drying lysozyme–glucose droplets using machine learning classifiers\",\"authors\":\"Anusuya Pal , Miho Yanagisawa\",\"doi\":\"10.1016/j.physa.2024.130141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Out-of-equilibrium processes, such as sessile droplet drying, often result in distinctive macroscopic residual patterns in systems containing molecules, proteins, and colloids. Protein–glucose mixtures are particularly effective models for studying the behavior of complex fluids containing biomolecules. This study investigates the drying patterns of lysozyme droplets with varying initial glucose concentrations. Without glucose, the crack patterns are chaotic and dispersed throughout the droplet. Interestingly, cracks predominantly form around the droplet edges at intermediate glucose concentrations, while the deposits become uniform and crack-free at high glucose concentrations. To understand and classify the unique patterns related to the initial compositional changes, we developed an automated pattern recognition pipeline. We used two methods for analyzing images captured throughout the drying process. The first method involved extracting statistical textural parameters from the images as quantitative features for machine learning classifiers. The second method utilized a neural network-based classifier to directly classify the images, achieving an accuracy of 97%. The results demonstrate the effectiveness of using images from the entire drying process, not just the final images, for pattern classification. This approach may be useful in gaining a fundamental understanding of unique crack pattern that emerge when glucose is added to a protein solution.</div></div>\",\"PeriodicalId\":20152,\"journal\":{\"name\":\"Physica A: Statistical Mechanics and its Applications\",\"volume\":\"654 \",\"pages\":\"Article 130141\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica A: Statistical Mechanics and its Applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378437124006502\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica A: Statistical Mechanics and its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378437124006502","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Pattern recognition of drying lysozyme–glucose droplets using machine learning classifiers
Out-of-equilibrium processes, such as sessile droplet drying, often result in distinctive macroscopic residual patterns in systems containing molecules, proteins, and colloids. Protein–glucose mixtures are particularly effective models for studying the behavior of complex fluids containing biomolecules. This study investigates the drying patterns of lysozyme droplets with varying initial glucose concentrations. Without glucose, the crack patterns are chaotic and dispersed throughout the droplet. Interestingly, cracks predominantly form around the droplet edges at intermediate glucose concentrations, while the deposits become uniform and crack-free at high glucose concentrations. To understand and classify the unique patterns related to the initial compositional changes, we developed an automated pattern recognition pipeline. We used two methods for analyzing images captured throughout the drying process. The first method involved extracting statistical textural parameters from the images as quantitative features for machine learning classifiers. The second method utilized a neural network-based classifier to directly classify the images, achieving an accuracy of 97%. The results demonstrate the effectiveness of using images from the entire drying process, not just the final images, for pattern classification. This approach may be useful in gaining a fundamental understanding of unique crack pattern that emerge when glucose is added to a protein solution.
期刊介绍:
Physica A: Statistical Mechanics and its Applications
Recognized by the European Physical Society
Physica A publishes research in the field of statistical mechanics and its applications.
Statistical mechanics sets out to explain the behaviour of macroscopic systems by studying the statistical properties of their microscopic constituents.
Applications of the techniques of statistical mechanics are widespread, and include: applications to physical systems such as solids, liquids and gases; applications to chemical and biological systems (colloids, interfaces, complex fluids, polymers and biopolymers, cell physics); and other interdisciplinary applications to for instance biological, economical and sociological systems.