M.L. Udy , S.K. Ebmeier , S.F.L. Watt , A. Hooper , A. Paredes
{"title":"卫星测量爆炸性火山喷发后的森林扰动、恢复和沉积物分布情况","authors":"M.L. Udy , S.K. Ebmeier , S.F.L. Watt , A. Hooper , A. Paredes","doi":"10.1016/j.jvolgeores.2024.108204","DOIUrl":null,"url":null,"abstract":"<div><div>The characteristics and extent of forest damage, and the subsequent patterns of recovery, reflect the intensity of an explosive volcanic eruption and have the potential to be a novel proxy for eruption magnitude and impact. Using satellite measurements of vegetation damage and recovery patterns, following the 2015 explosive eruption of Calbuco, Chile, we assess the impact on surrounding temperate forests and how areas impacted by different deposit types recover post-eruption. The Calbuco eruption resulted in tephra deposition over hundreds of square kilometres, pyroclastic flows extending 6 km and lahars extending 15 km. We explore NDVI derived from optical imagery (June 2013–May 2023) as well as radar backscatter and phase coherence (October 2014–June 2023) through time series analysis, clustering and estimation of recovery timescales to find patterns in forest disturbance and recovery. We find that forest damage and recovery correspond primarily with deposit type, thickness and dispersal directions. The thickest tephra deposits (<span><math><mo>></mo></math></span> 40 cm) correlate with the most vegetation loss, so our vegetation impact maps allow us to refine the spatial mapping of tephra fall-deposit isopachs to give a revised eruption volume of 0.28 km<sup>3</sup>. Vegetation recovery rates relate to initial impact type and intensity, but also local topography, aspect and altitude. Our results demonstrate a novel application of optical and radar satellite remote sensing to determine eruption extents and magnitudes through vegetation disturbance. We show that measuring vegetation disturbance, particularly in remote and densely vegetated environments, can help refine field-based analyses in inaccessible or intensely damaged zones.</div></div>","PeriodicalId":54753,"journal":{"name":"Journal of Volcanology and Geothermal Research","volume":"455 ","pages":"Article 108204"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Satellite measurement of forest disturbance, recovery and deposit distribution following explosive volcanic eruptions\",\"authors\":\"M.L. Udy , S.K. Ebmeier , S.F.L. Watt , A. Hooper , A. Paredes\",\"doi\":\"10.1016/j.jvolgeores.2024.108204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The characteristics and extent of forest damage, and the subsequent patterns of recovery, reflect the intensity of an explosive volcanic eruption and have the potential to be a novel proxy for eruption magnitude and impact. Using satellite measurements of vegetation damage and recovery patterns, following the 2015 explosive eruption of Calbuco, Chile, we assess the impact on surrounding temperate forests and how areas impacted by different deposit types recover post-eruption. The Calbuco eruption resulted in tephra deposition over hundreds of square kilometres, pyroclastic flows extending 6 km and lahars extending 15 km. We explore NDVI derived from optical imagery (June 2013–May 2023) as well as radar backscatter and phase coherence (October 2014–June 2023) through time series analysis, clustering and estimation of recovery timescales to find patterns in forest disturbance and recovery. We find that forest damage and recovery correspond primarily with deposit type, thickness and dispersal directions. The thickest tephra deposits (<span><math><mo>></mo></math></span> 40 cm) correlate with the most vegetation loss, so our vegetation impact maps allow us to refine the spatial mapping of tephra fall-deposit isopachs to give a revised eruption volume of 0.28 km<sup>3</sup>. Vegetation recovery rates relate to initial impact type and intensity, but also local topography, aspect and altitude. Our results demonstrate a novel application of optical and radar satellite remote sensing to determine eruption extents and magnitudes through vegetation disturbance. We show that measuring vegetation disturbance, particularly in remote and densely vegetated environments, can help refine field-based analyses in inaccessible or intensely damaged zones.</div></div>\",\"PeriodicalId\":54753,\"journal\":{\"name\":\"Journal of Volcanology and Geothermal Research\",\"volume\":\"455 \",\"pages\":\"Article 108204\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Volcanology and Geothermal Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377027324001963\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Volcanology and Geothermal Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377027324001963","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Satellite measurement of forest disturbance, recovery and deposit distribution following explosive volcanic eruptions
The characteristics and extent of forest damage, and the subsequent patterns of recovery, reflect the intensity of an explosive volcanic eruption and have the potential to be a novel proxy for eruption magnitude and impact. Using satellite measurements of vegetation damage and recovery patterns, following the 2015 explosive eruption of Calbuco, Chile, we assess the impact on surrounding temperate forests and how areas impacted by different deposit types recover post-eruption. The Calbuco eruption resulted in tephra deposition over hundreds of square kilometres, pyroclastic flows extending 6 km and lahars extending 15 km. We explore NDVI derived from optical imagery (June 2013–May 2023) as well as radar backscatter and phase coherence (October 2014–June 2023) through time series analysis, clustering and estimation of recovery timescales to find patterns in forest disturbance and recovery. We find that forest damage and recovery correspond primarily with deposit type, thickness and dispersal directions. The thickest tephra deposits ( 40 cm) correlate with the most vegetation loss, so our vegetation impact maps allow us to refine the spatial mapping of tephra fall-deposit isopachs to give a revised eruption volume of 0.28 km3. Vegetation recovery rates relate to initial impact type and intensity, but also local topography, aspect and altitude. Our results demonstrate a novel application of optical and radar satellite remote sensing to determine eruption extents and magnitudes through vegetation disturbance. We show that measuring vegetation disturbance, particularly in remote and densely vegetated environments, can help refine field-based analyses in inaccessible or intensely damaged zones.
期刊介绍:
An international research journal with focus on volcanic and geothermal processes and their impact on the environment and society.
Submission of papers covering the following aspects of volcanology and geothermal research are encouraged:
(1) Geological aspects of volcanic systems: volcano stratigraphy, structure and tectonic influence; eruptive history; evolution of volcanic landforms; eruption style and progress; dispersal patterns of lava and ash; analysis of real-time eruption observations.
(2) Geochemical and petrological aspects of volcanic rocks: magma genesis and evolution; crystallization; volatile compositions, solubility, and degassing; volcanic petrography and textural analysis.
(3) Hydrology, geochemistry and measurement of volcanic and hydrothermal fluids: volcanic gas emissions; fumaroles and springs; crater lakes; hydrothermal mineralization.
(4) Geophysical aspects of volcanic systems: physical properties of volcanic rocks and magmas; heat flow studies; volcano seismology, geodesy and remote sensing.
(5) Computational modeling and experimental simulation of magmatic and hydrothermal processes: eruption dynamics; magma transport and storage; plume dynamics and ash dispersal; lava flow dynamics; hydrothermal fluid flow; thermodynamics of aqueous fluids and melts.
(6) Volcano hazard and risk research: hazard zonation methodology, development of forecasting tools; assessment techniques for vulnerability and impact.