基于经典神经网络激活函数的自适应系统中的延迟概率

IF 5 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Egyptian Informatics Journal Pub Date : 2024-10-14 DOI:10.1016/j.eij.2024.100555
Maja Lutovac Banduka , Vladimir Mladenović , Danijela Milosević , Vladimir Orlić , Asutosh Kar
{"title":"基于经典神经网络激活函数的自适应系统中的延迟概率","authors":"Maja Lutovac Banduka ,&nbsp;Vladimir Mladenović ,&nbsp;Danijela Milosević ,&nbsp;Vladimir Orlić ,&nbsp;Asutosh Kar","doi":"10.1016/j.eij.2024.100555","DOIUrl":null,"url":null,"abstract":"<div><div>Many improved algorithms have been proposed for nonlinear system designs. There is no single procedure for providing an algorithm with closed-form system response relations as a function of system parameters. In this paper, we illustrate a unique method for discrete-time digital nonlinear systems. Provides better insight into the analyzed system, algorithm, and processes. The main contribution is closed-form symbolic responses in the time domain and modifications of the implemented algorithm. A comparison of adaptive systems and neural networks is also presented. The design and analysis of nonlinear systems are more clearly simplified for either engineers or researchers without deep mathematical knowledge.</div></div>","PeriodicalId":56010,"journal":{"name":"Egyptian Informatics Journal","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Delay probability in adaptive systems based on activation function of classical neural networks\",\"authors\":\"Maja Lutovac Banduka ,&nbsp;Vladimir Mladenović ,&nbsp;Danijela Milosević ,&nbsp;Vladimir Orlić ,&nbsp;Asutosh Kar\",\"doi\":\"10.1016/j.eij.2024.100555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Many improved algorithms have been proposed for nonlinear system designs. There is no single procedure for providing an algorithm with closed-form system response relations as a function of system parameters. In this paper, we illustrate a unique method for discrete-time digital nonlinear systems. Provides better insight into the analyzed system, algorithm, and processes. The main contribution is closed-form symbolic responses in the time domain and modifications of the implemented algorithm. A comparison of adaptive systems and neural networks is also presented. The design and analysis of nonlinear systems are more clearly simplified for either engineers or researchers without deep mathematical knowledge.</div></div>\",\"PeriodicalId\":56010,\"journal\":{\"name\":\"Egyptian Informatics Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Egyptian Informatics Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S111086652400118X\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Informatics Journal","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S111086652400118X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

针对非线性系统设计提出了许多改进算法。目前还没有一种算法能提供与系统参数有关的闭式系统响应关系。在本文中,我们阐述了一种适用于离散时间数字非线性系统的独特方法。它能让我们更好地了解所分析的系统、算法和过程。主要贡献在于时域的闭式符号响应和对已实施算法的修改。此外,还对自适应系统和神经网络进行了比较。对于没有深厚数学知识的工程师或研究人员来说,非线性系统的设计和分析得到了更清晰的简化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Delay probability in adaptive systems based on activation function of classical neural networks
Many improved algorithms have been proposed for nonlinear system designs. There is no single procedure for providing an algorithm with closed-form system response relations as a function of system parameters. In this paper, we illustrate a unique method for discrete-time digital nonlinear systems. Provides better insight into the analyzed system, algorithm, and processes. The main contribution is closed-form symbolic responses in the time domain and modifications of the implemented algorithm. A comparison of adaptive systems and neural networks is also presented. The design and analysis of nonlinear systems are more clearly simplified for either engineers or researchers without deep mathematical knowledge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Egyptian Informatics Journal
Egyptian Informatics Journal Decision Sciences-Management Science and Operations Research
CiteScore
11.10
自引率
1.90%
发文量
59
审稿时长
110 days
期刊介绍: The Egyptian Informatics Journal is published by the Faculty of Computers and Artificial Intelligence, Cairo University. This Journal provides a forum for the state-of-the-art research and development in the fields of computing, including computer sciences, information technologies, information systems, operations research and decision support. Innovative and not-previously-published work in subjects covered by the Journal is encouraged to be submitted, whether from academic, research or commercial sources.
期刊最新文献
HD-MVCNN: High-density ECG signal based diabetic prediction and classification using multi-view convolutional neural network A hybrid encryption algorithm based approach for secure privacy protection of big data in hospitals A new probabilistic linguistic decision-making process based on PL-BWM and improved three-way TODIM methods Interval valued inventory model with different payment strategies for green products under interval valued Grey Wolf optimizer Algorithm fitness function Intelligent SDN to enhance security in IoT networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1