Jiaqing Shi , Zheng Lv , Jian Wang , Wentao Tang , Yufei Liu , Zenglin Yang , Jian Yang , Zhimin Yang , Shuwang Ma
{"title":"铝基辐射屏蔽复合材料辐照诱导力学行为的有限元研究","authors":"Jiaqing Shi , Zheng Lv , Jian Wang , Wentao Tang , Yufei Liu , Zenglin Yang , Jian Yang , Zhimin Yang , Shuwang Ma","doi":"10.1016/j.jnucmat.2024.155440","DOIUrl":null,"url":null,"abstract":"<div><div>Aluminum-matrix radiation-shielding composites play a crucial role in advanced nuclear energy systems and fuel containers owing to their shielding design flexibility and desired structural compatibility. After being irradiated by neutrons, the shielding composites undergo irradiation damage and exhibit irradiation-induced mechanical effects such as irradiation hardening and embrittlement, which directly threaten the industrial application of the material. In this study, a finite element method was used to investigate the irradiation-induced mechanical behavior of radiation-shielding B<sub>4</sub>C<sub>P</sub>-W<sub>P</sub>/Al composites. Using published data on the post-irradiation mechanical property evolutions of the matrix and shielding particles, and incorporating mechanisms of irradiation hardening and embrittlement, a finite element model was developed to describe the deformation of pristine and post-irradiation composites. Simulations of the post-irradiation mechanical properties of the aluminum-matrix radiation-shielding composites were conducted. The simulation results successfully reproduced the experimental findings for both the Al matrix and composites after irradiation. Furthermore, the stress-strain responses and deformation behaviors of the composites at different stages of irradiation damage are discussed. Finally, based on the simulation results, an artificial neural network was trained to efficiently predict the irradiation-induced mechanical behavior of the composites.</div></div>","PeriodicalId":373,"journal":{"name":"Journal of Nuclear Materials","volume":"603 ","pages":"Article 155440"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A finite element study on the irradiation-induced mechanical behaviors of aluminum-matrix radiation-shielding composites\",\"authors\":\"Jiaqing Shi , Zheng Lv , Jian Wang , Wentao Tang , Yufei Liu , Zenglin Yang , Jian Yang , Zhimin Yang , Shuwang Ma\",\"doi\":\"10.1016/j.jnucmat.2024.155440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Aluminum-matrix radiation-shielding composites play a crucial role in advanced nuclear energy systems and fuel containers owing to their shielding design flexibility and desired structural compatibility. After being irradiated by neutrons, the shielding composites undergo irradiation damage and exhibit irradiation-induced mechanical effects such as irradiation hardening and embrittlement, which directly threaten the industrial application of the material. In this study, a finite element method was used to investigate the irradiation-induced mechanical behavior of radiation-shielding B<sub>4</sub>C<sub>P</sub>-W<sub>P</sub>/Al composites. Using published data on the post-irradiation mechanical property evolutions of the matrix and shielding particles, and incorporating mechanisms of irradiation hardening and embrittlement, a finite element model was developed to describe the deformation of pristine and post-irradiation composites. Simulations of the post-irradiation mechanical properties of the aluminum-matrix radiation-shielding composites were conducted. The simulation results successfully reproduced the experimental findings for both the Al matrix and composites after irradiation. Furthermore, the stress-strain responses and deformation behaviors of the composites at different stages of irradiation damage are discussed. Finally, based on the simulation results, an artificial neural network was trained to efficiently predict the irradiation-induced mechanical behavior of the composites.</div></div>\",\"PeriodicalId\":373,\"journal\":{\"name\":\"Journal of Nuclear Materials\",\"volume\":\"603 \",\"pages\":\"Article 155440\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nuclear Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022311524005403\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022311524005403","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
A finite element study on the irradiation-induced mechanical behaviors of aluminum-matrix radiation-shielding composites
Aluminum-matrix radiation-shielding composites play a crucial role in advanced nuclear energy systems and fuel containers owing to their shielding design flexibility and desired structural compatibility. After being irradiated by neutrons, the shielding composites undergo irradiation damage and exhibit irradiation-induced mechanical effects such as irradiation hardening and embrittlement, which directly threaten the industrial application of the material. In this study, a finite element method was used to investigate the irradiation-induced mechanical behavior of radiation-shielding B4CP-WP/Al composites. Using published data on the post-irradiation mechanical property evolutions of the matrix and shielding particles, and incorporating mechanisms of irradiation hardening and embrittlement, a finite element model was developed to describe the deformation of pristine and post-irradiation composites. Simulations of the post-irradiation mechanical properties of the aluminum-matrix radiation-shielding composites were conducted. The simulation results successfully reproduced the experimental findings for both the Al matrix and composites after irradiation. Furthermore, the stress-strain responses and deformation behaviors of the composites at different stages of irradiation damage are discussed. Finally, based on the simulation results, an artificial neural network was trained to efficiently predict the irradiation-induced mechanical behavior of the composites.
期刊介绍:
The Journal of Nuclear Materials publishes high quality papers in materials research for nuclear applications, primarily fission reactors, fusion reactors, and similar environments including radiation areas of charged particle accelerators. Both original research and critical review papers covering experimental, theoretical, and computational aspects of either fundamental or applied nature are welcome.
The breadth of the field is such that a wide range of processes and properties in the field of materials science and engineering is of interest to the readership, spanning atom-scale processes, microstructures, thermodynamics, mechanical properties, physical properties, and corrosion, for example.
Topics covered by JNM
Fission reactor materials, including fuels, cladding, core structures, pressure vessels, coolant interactions with materials, moderator and control components, fission product behavior.
Materials aspects of the entire fuel cycle.
Materials aspects of the actinides and their compounds.
Performance of nuclear waste materials; materials aspects of the immobilization of wastes.
Fusion reactor materials, including first walls, blankets, insulators and magnets.
Neutron and charged particle radiation effects in materials, including defects, transmutations, microstructures, phase changes and macroscopic properties.
Interaction of plasmas, ion beams, electron beams and electromagnetic radiation with materials relevant to nuclear systems.