Xilei Duan , Xueyang Liu , Zhenghua Qian , Qiang Zhang , Lin Li , Kui Zhang , Yanbo Qiao
{"title":"硼硅酸盐玻璃熔体中二氧化钌纳米结构的可控生长","authors":"Xilei Duan , Xueyang Liu , Zhenghua Qian , Qiang Zhang , Lin Li , Kui Zhang , Yanbo Qiao","doi":"10.1016/j.jnucmat.2024.155436","DOIUrl":null,"url":null,"abstract":"<div><div>Ruthenium, a fission product generated during the fission of uranium oxide fuel in a reactor, interacts with alkali metals such as sodium in the upper layer of the cold cap, forming a sodium ruthenate intermediate (Na<sub>x</sub>Ru<sub>y</sub>O<sub>z</sub>), which promotes the crystallization of acicular RuO<sub>2</sub> within the glass melt. During vitrification, RuO<sub>2</sub> predominantly settles at the bottom of the melt owing to its high density and low solubility, significantly increasing both the conductivity and viscosity of the glass melt. Herein, the formation of Na<em><sub>x</sub></em>Ru<em><sub>y</sub></em>O<em><sub>z</sub></em>, along with the chemical reactions promoting the crystallization of RuO<sub>2</sub> in the waste glass, was comprehensively investigated. The results of X-ray diffraction and X-ray spectroscopy indicate that lamellar and granular Na<sub>3</sub>RuO<sub>4</sub> do not form directly through the reaction between NaNO<sub>3</sub> and RuO<sub>2</sub> but rather through an intermediate stage from Na<sub>2</sub>RuO<sub>4</sub>. This reaction critically affects the morphology of RuO<sub>2</sub> within the waste glass. The uncalcined mixture of NaNO<sub>3</sub> and RuO<sub>2</sub> was found to interact with the glass melt, forming granular RuO<sub>2</sub> crystals, whereas the reaction of Na<sub>3</sub>RuO<sub>4</sub> with the glass melt was found to lead to the formation of acicular RuO<sub>2</sub> crystals. The results of X-ray absorption fine structure analysis indicate that the valence state of Ru in NaRu-BSG is slightly higher than that in reference RuO<sub>2</sub>, which was attributed to the presence of trace amounts of Na<sub>3</sub>RuO<sub>4</sub> in the glass.</div></div>","PeriodicalId":373,"journal":{"name":"Journal of Nuclear Materials","volume":"603 ","pages":"Article 155436"},"PeriodicalIF":2.8000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Controlled growth of ruthenium dioxide nanostructures in borosilicate glass melts\",\"authors\":\"Xilei Duan , Xueyang Liu , Zhenghua Qian , Qiang Zhang , Lin Li , Kui Zhang , Yanbo Qiao\",\"doi\":\"10.1016/j.jnucmat.2024.155436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ruthenium, a fission product generated during the fission of uranium oxide fuel in a reactor, interacts with alkali metals such as sodium in the upper layer of the cold cap, forming a sodium ruthenate intermediate (Na<sub>x</sub>Ru<sub>y</sub>O<sub>z</sub>), which promotes the crystallization of acicular RuO<sub>2</sub> within the glass melt. During vitrification, RuO<sub>2</sub> predominantly settles at the bottom of the melt owing to its high density and low solubility, significantly increasing both the conductivity and viscosity of the glass melt. Herein, the formation of Na<em><sub>x</sub></em>Ru<em><sub>y</sub></em>O<em><sub>z</sub></em>, along with the chemical reactions promoting the crystallization of RuO<sub>2</sub> in the waste glass, was comprehensively investigated. The results of X-ray diffraction and X-ray spectroscopy indicate that lamellar and granular Na<sub>3</sub>RuO<sub>4</sub> do not form directly through the reaction between NaNO<sub>3</sub> and RuO<sub>2</sub> but rather through an intermediate stage from Na<sub>2</sub>RuO<sub>4</sub>. This reaction critically affects the morphology of RuO<sub>2</sub> within the waste glass. The uncalcined mixture of NaNO<sub>3</sub> and RuO<sub>2</sub> was found to interact with the glass melt, forming granular RuO<sub>2</sub> crystals, whereas the reaction of Na<sub>3</sub>RuO<sub>4</sub> with the glass melt was found to lead to the formation of acicular RuO<sub>2</sub> crystals. The results of X-ray absorption fine structure analysis indicate that the valence state of Ru in NaRu-BSG is slightly higher than that in reference RuO<sub>2</sub>, which was attributed to the presence of trace amounts of Na<sub>3</sub>RuO<sub>4</sub> in the glass.</div></div>\",\"PeriodicalId\":373,\"journal\":{\"name\":\"Journal of Nuclear Materials\",\"volume\":\"603 \",\"pages\":\"Article 155436\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nuclear Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022311524005361\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022311524005361","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Controlled growth of ruthenium dioxide nanostructures in borosilicate glass melts
Ruthenium, a fission product generated during the fission of uranium oxide fuel in a reactor, interacts with alkali metals such as sodium in the upper layer of the cold cap, forming a sodium ruthenate intermediate (NaxRuyOz), which promotes the crystallization of acicular RuO2 within the glass melt. During vitrification, RuO2 predominantly settles at the bottom of the melt owing to its high density and low solubility, significantly increasing both the conductivity and viscosity of the glass melt. Herein, the formation of NaxRuyOz, along with the chemical reactions promoting the crystallization of RuO2 in the waste glass, was comprehensively investigated. The results of X-ray diffraction and X-ray spectroscopy indicate that lamellar and granular Na3RuO4 do not form directly through the reaction between NaNO3 and RuO2 but rather through an intermediate stage from Na2RuO4. This reaction critically affects the morphology of RuO2 within the waste glass. The uncalcined mixture of NaNO3 and RuO2 was found to interact with the glass melt, forming granular RuO2 crystals, whereas the reaction of Na3RuO4 with the glass melt was found to lead to the formation of acicular RuO2 crystals. The results of X-ray absorption fine structure analysis indicate that the valence state of Ru in NaRu-BSG is slightly higher than that in reference RuO2, which was attributed to the presence of trace amounts of Na3RuO4 in the glass.
期刊介绍:
The Journal of Nuclear Materials publishes high quality papers in materials research for nuclear applications, primarily fission reactors, fusion reactors, and similar environments including radiation areas of charged particle accelerators. Both original research and critical review papers covering experimental, theoretical, and computational aspects of either fundamental or applied nature are welcome.
The breadth of the field is such that a wide range of processes and properties in the field of materials science and engineering is of interest to the readership, spanning atom-scale processes, microstructures, thermodynamics, mechanical properties, physical properties, and corrosion, for example.
Topics covered by JNM
Fission reactor materials, including fuels, cladding, core structures, pressure vessels, coolant interactions with materials, moderator and control components, fission product behavior.
Materials aspects of the entire fuel cycle.
Materials aspects of the actinides and their compounds.
Performance of nuclear waste materials; materials aspects of the immobilization of wastes.
Fusion reactor materials, including first walls, blankets, insulators and magnets.
Neutron and charged particle radiation effects in materials, including defects, transmutations, microstructures, phase changes and macroscopic properties.
Interaction of plasmas, ion beams, electron beams and electromagnetic radiation with materials relevant to nuclear systems.