掺杂二元胺:HIT 太阳能电池中的高效电子/空穴收集层

IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Science and Engineering B-advanced Functional Solid-state Materials Pub Date : 2024-10-14 DOI:10.1016/j.mseb.2024.117754
Naima, Pawan K. Tyagi, Vinod Singh
{"title":"掺杂二元胺:HIT 太阳能电池中的高效电子/空穴收集层","authors":"Naima,&nbsp;Pawan K. Tyagi,&nbsp;Vinod Singh","doi":"10.1016/j.mseb.2024.117754","DOIUrl":null,"url":null,"abstract":"<div><div>In this report, the optimization of various parameters of electron/hole collection layer, buffer layer and active layer of the HIT solar cell have been carried out by using AFORS-HET software. Novelty of the reported work is the use of doped diamane as an effective electron/hole collection layers for the enhanced performance of the HIT solar cell. Here, n and p-type diamane layers are used as the electron/hole collection layers or the emitter and back surface field (BSF) layer, respectively. Considering the absorption loss at the front contact, the maximum efficiency (η) for the fully optimized cell is found 27.88 % with open circuit voltage (V<sub>OC</sub>) 691.1 mV, current density (J<sub>SC</sub>) 49.3 mA/<span><math><msup><mtext>cm</mtext><mn>2</mn></msup></math></span> and fill factor (FF) 81.83 % whereas, in conventional HIT cell with η of 25.6 % and J<sub>SC</sub> of 41.8 mA/cm<sup>2</sup> reported by Masuko et. al. <span><span>[7]</span></span>. If zero absorption loss is considered, the efficiency could exceed its theoretical limit. A detailed study has also been done on the role of texturing angle and absorption loss found at the front contact of the<!--> <!-->solar cell.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering B-advanced Functional Solid-state Materials","volume":"310 ","pages":"Article 117754"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Doped diamane: An efficient electron/hole collection layer in HIT solar cell\",\"authors\":\"Naima,&nbsp;Pawan K. Tyagi,&nbsp;Vinod Singh\",\"doi\":\"10.1016/j.mseb.2024.117754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this report, the optimization of various parameters of electron/hole collection layer, buffer layer and active layer of the HIT solar cell have been carried out by using AFORS-HET software. Novelty of the reported work is the use of doped diamane as an effective electron/hole collection layers for the enhanced performance of the HIT solar cell. Here, n and p-type diamane layers are used as the electron/hole collection layers or the emitter and back surface field (BSF) layer, respectively. Considering the absorption loss at the front contact, the maximum efficiency (η) for the fully optimized cell is found 27.88 % with open circuit voltage (V<sub>OC</sub>) 691.1 mV, current density (J<sub>SC</sub>) 49.3 mA/<span><math><msup><mtext>cm</mtext><mn>2</mn></msup></math></span> and fill factor (FF) 81.83 % whereas, in conventional HIT cell with η of 25.6 % and J<sub>SC</sub> of 41.8 mA/cm<sup>2</sup> reported by Masuko et. al. <span><span>[7]</span></span>. If zero absorption loss is considered, the efficiency could exceed its theoretical limit. A detailed study has also been done on the role of texturing angle and absorption loss found at the front contact of the<!--> <!-->solar cell.</div></div>\",\"PeriodicalId\":18233,\"journal\":{\"name\":\"Materials Science and Engineering B-advanced Functional Solid-state Materials\",\"volume\":\"310 \",\"pages\":\"Article 117754\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Engineering B-advanced Functional Solid-state Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S092151072400583X\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering B-advanced Functional Solid-state Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092151072400583X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本报告使用 AFORS-HET 软件对 HIT 太阳能电池的电子/空穴收集层、缓冲层和活性层的各种参数进行了优化。报告工作的新颖之处在于使用掺杂二元胺作为有效的电子/空穴收集层,以提高 HIT 太阳能电池的性能。在这里,n 型和 p 型二元胺层分别用作电子/空穴收集层或发射极和背表面场(BSF)层。考虑到前触点的吸收损耗,完全优化电池的最高效率(η)为 27.88%,开路电压(VOC)为 691.1 mV,电流密度(JSC)为 49.3 mA/cm2,填充因子(FF)为 81.83%,而 Masuko 等人[7]报告的传统 HIT 电池的最高效率(η)为 25.6%,电流密度(JSC)为 41.8 mA/cm2。如果考虑零吸收损耗,效率可能会超过理论极限。此外,还对太阳能电池前触点的纹理角度和吸收损耗的作用进行了详细研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Doped diamane: An efficient electron/hole collection layer in HIT solar cell
In this report, the optimization of various parameters of electron/hole collection layer, buffer layer and active layer of the HIT solar cell have been carried out by using AFORS-HET software. Novelty of the reported work is the use of doped diamane as an effective electron/hole collection layers for the enhanced performance of the HIT solar cell. Here, n and p-type diamane layers are used as the electron/hole collection layers or the emitter and back surface field (BSF) layer, respectively. Considering the absorption loss at the front contact, the maximum efficiency (η) for the fully optimized cell is found 27.88 % with open circuit voltage (VOC) 691.1 mV, current density (JSC) 49.3 mA/cm2 and fill factor (FF) 81.83 % whereas, in conventional HIT cell with η of 25.6 % and JSC of 41.8 mA/cm2 reported by Masuko et. al. [7]. If zero absorption loss is considered, the efficiency could exceed its theoretical limit. A detailed study has also been done on the role of texturing angle and absorption loss found at the front contact of the solar cell.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.60
自引率
2.80%
发文量
481
审稿时长
3.5 months
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related to the electronic, electrochemical, ionic, magnetic, optical, and biosensing properties of solid state materials in bulk, thin film and particulate forms. Papers dealing with synthesis, processing, characterization, structure, physical properties and computational aspects of nano-crystalline, crystalline, amorphous and glassy forms of ceramics, semiconductors, layered insertion compounds, low-dimensional compounds and systems, fast-ion conductors, polymers and dielectrics are viewed as suitable for publication. Articles focused on nano-structured aspects of these advanced solid-state materials will also be considered suitable.
期刊最新文献
Biocompatible Mn and Cu dual-doped ZnS nanosheets for enhanced the photocatalytic activity under sunlight irradiation for wastewater treatment and embedded with PVA polymer for reusability Study on the mechanism of photocatalytic activity enhancement of Ag/Ag3PO4/PDI-2 supramolecular Z-scheme heterojunction photocatalyst A comparative study on the lamella effect and properties of atomized iron powder and reduced iron powder in Fe-based soft magnetic composites Effect of temperature and capillary number on wettability and contact angle hysteresis of various materials. Modeling taking into account porosity Synthesis and enhanced electrical properties of Ag-doped α-Fe2O3 nanoparticles in PVA films for nanoelectronic applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1